This paper analyses the effects of small injection/suction Reynolds number, Hartmann parameter, permeability parameter and wave number on a viscous incompressible electrically conducting fluid flow in a parallel porou...This paper analyses the effects of small injection/suction Reynolds number, Hartmann parameter, permeability parameter and wave number on a viscous incompressible electrically conducting fluid flow in a parallel porous plates forming a channel. The plates of the channel are parallel with the same constant temperature and subjected to a small injection/suction. The upper plate is allowed to move in flow direction and the lower plate is kept at rest. A uniform magnetic field is applied perpendicularly to the plates. The main objective of the paper is to study the effect of the above parameters on temporal linear stability analysis of the flow with a new approach based on modified Orr-Sommerfeld equation. It is obtained that the permeability parameter, the Hartmann parameter and the wave number contribute to the linear temporal stability while the small injection/suction Reynolds number has a negligible effect on the stability.展开更多
We consider f(R,T) theory of gravity, where R is the curvature scalar and T is the trace of the energy momentum tensor. Attention is attached to the special case, f(R,T)=R+2f(T) and two expressions are assumed for the...We consider f(R,T) theory of gravity, where R is the curvature scalar and T is the trace of the energy momentum tensor. Attention is attached to the special case, f(R,T)=R+2f(T) and two expressions are assumed for the function f(T),(a1Tn+b1)/(a2Tn+b2) and a3Inq(b3Tm), where a1,a2 ,b1,b2,n,a3 ,b3,q and m are input parameters. We observe that by adjusting suitably these input parameters, energy conditions can be satisfied. Moreover, an analysis of the perturbations and stabilities of de Sitter solutions and power-law solutions is performed with the use of the two models. The results show that for some values of the input parameters, for which energy conditions are satisfied, de Sitter solutions and power-law solutions may be stables.展开更多
文摘This paper analyses the effects of small injection/suction Reynolds number, Hartmann parameter, permeability parameter and wave number on a viscous incompressible electrically conducting fluid flow in a parallel porous plates forming a channel. The plates of the channel are parallel with the same constant temperature and subjected to a small injection/suction. The upper plate is allowed to move in flow direction and the lower plate is kept at rest. A uniform magnetic field is applied perpendicularly to the plates. The main objective of the paper is to study the effect of the above parameters on temporal linear stability analysis of the flow with a new approach based on modified Orr-Sommerfeld equation. It is obtained that the permeability parameter, the Hartmann parameter and the wave number contribute to the linear temporal stability while the small injection/suction Reynolds number has a negligible effect on the stability.
文摘We consider f(R,T) theory of gravity, where R is the curvature scalar and T is the trace of the energy momentum tensor. Attention is attached to the special case, f(R,T)=R+2f(T) and two expressions are assumed for the function f(T),(a1Tn+b1)/(a2Tn+b2) and a3Inq(b3Tm), where a1,a2 ,b1,b2,n,a3 ,b3,q and m are input parameters. We observe that by adjusting suitably these input parameters, energy conditions can be satisfied. Moreover, an analysis of the perturbations and stabilities of de Sitter solutions and power-law solutions is performed with the use of the two models. The results show that for some values of the input parameters, for which energy conditions are satisfied, de Sitter solutions and power-law solutions may be stables.