期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Itinerary-Dependent Degradation Analysis of a Lithium-Ion Battery Cell for E-Bike Applications in Rwanda
1
作者 Aimable Ngendahayo adriàjunyent-ferré +1 位作者 JoanMarc Rodriguez Bernuz Etienne Ntagwirumugara 《Energy Engineering》 EI 2024年第11期3121-3131,共11页
There are obstacles to the widespread use of small electric vehicles(EVs)in Rwanda,including concerns regarding the battery range and lifespan.Lithium-ion batteries(LIBs)play an important role in EVs.However,their per... There are obstacles to the widespread use of small electric vehicles(EVs)in Rwanda,including concerns regarding the battery range and lifespan.Lithium-ion batteries(LIBs)play an important role in EVs.However,their performance declines over time because of several factors.To optimize battery management systems and extend the range of EVs in Rwanda,it is essential to understand the influence of the driving profiles on lithium-ion battery degradation.This study analyzed the degradation patterns of a lithium-ion battery cell that propels an E-bike using various real-world E-bike driving cycles that represent Rwandan driving conditions under deep discharge(>80%).By being aware of these variables,battery failure can be slowed and improved battery performance can be achieved to promote the transition to cleaner transportation in Rwanda for the productive use of energy.The analyzed parameters that affect battery performance are temperature,driving cycles,and state of charge.It was found that the higher the temperature,the higher was the rate of fading.On the other hand,the EVs that operate in the region with higher elevation(hilly region)combined with a flat surface where the riders use their physical forces to propel the E-bike and their batteries lose their capacity rapidly compared to those operating in regions where the energy from the lithium-ion battery assists for the entire mileage.By draining the battery to 10%and charging it to 90%of its initial capacity,the capacity fading decreased by 5%. 展开更多
关键词 Degradation driving cycle E-bike state of charge lithium manganese oxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部