Auxetic two-dimensional(2D)materials provide a promising platform for biomedicine,sensors,and many other applications at the nanoscale.In this work,utilizing a hypothesis-based data-driven approache,we identify multip...Auxetic two-dimensional(2D)materials provide a promising platform for biomedicine,sensors,and many other applications at the nanoscale.In this work,utilizing a hypothesis-based data-driven approache,we identify multiple materials with remarkable in-plane auxetic behavior in a family of buckled monolayer 2D materials.These materials are transition metal selenides and transition metal halides with the stoichiometry MX(M=V,Cr,Mn,Fe,Co,Cu,Zn,Ag,and X=Se,Cl,Br,I).First-principles calculations reveal that the desirable auxetic behavior of these 2D compounds originates from the interplay between the buckled 2D structure and the weak metal-metal interaction determined by their electronic structures.We observe that the Poisson’s ratio is sensitive to magnetic order and the amount of uniaxial stress applied.A transition from positive Poisson’s ratio(PPR)to negative Poisson’s ratio(NPR)for a subgroup of MX compounds under large uniaxial stress is predicted.The work provides a guideline for the future design of 2D auxetic materials at the nanoscale.展开更多
We review the theory and application of adiabatic exchange–correlation(xc)-kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection f...We review the theory and application of adiabatic exchange–correlation(xc)-kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem and Hedin’s equations,respectively.Various different xc-kernels,which are all rooted in the homogeneous electron gas,are introduced but hereafter we focus on the specific class of renormalized adiabatic kernels,in particular the rALDA and rAPBE.The kernels drastically improve the description of short-range correlations as compared to the random phase approximation(RPA),resulting in significantly better correlation energies.This effect greatly reduces the reliance on error cancellations,which is essential in RPA,and systematically improves covalent bond energies while preserving the good performance of the RPA for dispersive interactions.For quasiparticle energies,the xc-kernels account for vertex corrections that are missing in the GW self-energy.In this context,we show that the short-range correlations mainly correct the absolute band positions while the band gap is less affected in agreement with the known good performance of GW for the latter.The renormalized xc-kernels offer a rigorous extension of the RPA and GW methods with clear improvements in terms of accuracy at little extra computational cost.展开更多
Charge density waves(CDWs)in transition metal dichalcogenides are the subject of growing scientific interest due to their rich interplay with exotic phases of matter and their potential technological applications.Here...Charge density waves(CDWs)in transition metal dichalcogenides are the subject of growing scientific interest due to their rich interplay with exotic phases of matter and their potential technological applications.Here,using density functional theory with advanced meta-generalized gradient approximations(meta-GGAs)and linear response time-dependent density functional theory(TDDFT)with state-of-the-art exchange-correlation kernels,we investigate the electronic,vibrational.展开更多
基金This work was supported as part of the Center for Complex Materials from First Principles(CCM),an Energy Frontier Research Center funded by the US Department of Energy(DOE),Office of Science,Basic Energy Sciences(BES),under Award DESC0012575L.Yu was supported by the US Department of Energy(DOE)under Award DE-SC0021127It benefitted from the supercomputing resources of the National Energy Research Scientific Computing Center(NERSC),a US Department of Energy Office of Science User Facility operated under contract no.DE-AC02-05CH11231.
文摘Auxetic two-dimensional(2D)materials provide a promising platform for biomedicine,sensors,and many other applications at the nanoscale.In this work,utilizing a hypothesis-based data-driven approache,we identify multiple materials with remarkable in-plane auxetic behavior in a family of buckled monolayer 2D materials.These materials are transition metal selenides and transition metal halides with the stoichiometry MX(M=V,Cr,Mn,Fe,Co,Cu,Zn,Ag,and X=Se,Cl,Br,I).First-principles calculations reveal that the desirable auxetic behavior of these 2D compounds originates from the interplay between the buckled 2D structure and the weak metal-metal interaction determined by their electronic structures.We observe that the Poisson’s ratio is sensitive to magnetic order and the amount of uniaxial stress applied.A transition from positive Poisson’s ratio(PPR)to negative Poisson’s ratio(NPR)for a subgroup of MX compounds under large uniaxial stress is predicted.The work provides a guideline for the future design of 2D auxetic materials at the nanoscale.
基金K.S.T.acknowledges funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No 773122,“LIMA”)The work of A.R.was supported by National Science Foundation under Grant No.DMR-1553022.J.E.B.acknowledges the A.R.Smith Department of Chemistry and Fermentation Sciences for support.
文摘We review the theory and application of adiabatic exchange–correlation(xc)-kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem and Hedin’s equations,respectively.Various different xc-kernels,which are all rooted in the homogeneous electron gas,are introduced but hereafter we focus on the specific class of renormalized adiabatic kernels,in particular the rALDA and rAPBE.The kernels drastically improve the description of short-range correlations as compared to the random phase approximation(RPA),resulting in significantly better correlation energies.This effect greatly reduces the reliance on error cancellations,which is essential in RPA,and systematically improves covalent bond energies while preserving the good performance of the RPA for dispersive interactions.For quasiparticle energies,the xc-kernels account for vertex corrections that are missing in the GW self-energy.In this context,we show that the short-range correlations mainly correct the absolute band positions while the band gap is less affected in agreement with the known good performance of GW for the latter.The renormalized xc-kernels offer a rigorous extension of the RPA and GW methods with clear improvements in terms of accuracy at little extra computational cost.
基金supported by the donors of ACS Petroleum Research Fund under New Directions Grant 65973-ND10.A.R.served as Principal Investigator on ACS PRF 65973-ND10 that provided support for H.T.L.Y.and A.R.acknowledge support from Tulane University’s startup fund,which also supports L.YThis research includes calculations carried out on HPC resources supported in part by the National Science Foundation through major research instrumentation grant number 1625061 and by the US Army Research Laboratory under contract number W911NF-16-2-0189This research was supported in part by the high performance computing(HPC)resources and services provided by Information Technology at Tulane University,New Orleans,LA.
文摘Charge density waves(CDWs)in transition metal dichalcogenides are the subject of growing scientific interest due to their rich interplay with exotic phases of matter and their potential technological applications.Here,using density functional theory with advanced meta-generalized gradient approximations(meta-GGAs)and linear response time-dependent density functional theory(TDDFT)with state-of-the-art exchange-correlation kernels,we investigate the electronic,vibrational.