期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
1
作者 Marek Gajewski Olgierd Hryniewicz +5 位作者 agnieszka jastrzębska Mariusz Kozakiewicz Karol Opara Jan Wojciech Owsiński Sławomir Zadrozny Tomasz Zwierzchowski 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1178-1188,共11页
Distinguishing between web traffic generated by bots and humans is an important task in the evaluation of online marketing campaigns.One of the main challenges is related to only partial availability of the performanc... Distinguishing between web traffic generated by bots and humans is an important task in the evaluation of online marketing campaigns.One of the main challenges is related to only partial availability of the performance metrics:although some users can be unambiguously classified as bots,the correct label is uncertain in many cases.This calls for the use of classifiers capable of explaining their decisions.This paper demonstrates two such mechanisms based on features carefully engineered from web logs.The first is a man-made rule-based system.The second is a hierarchical model that first performs clustering and next classification using human-centred,interpretable methods.The stability of the proposed methods is analyzed and a minimal set of features that convey the classdiscriminating information is selected.The proposed data processing and analysis methodology are successfully applied to real-world data sets from online publishers. 展开更多
关键词 Web logs Classification CLUSTERING Web traffic Bots INTERPRETABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部