期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fuzzy Logic Inference System for Managing Intensive Care Unit Resources Based on Knowledge Graph
1
作者 ahmad f subahi Areej Athama 《Computers, Materials & Continua》 SCIE EI 2023年第12期3801-3816,共16页
With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipul... With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system. 展开更多
关键词 Fuzzy logic role-based expert system decision-support system knowledge graph Internet of Things ICU resource management Neo4J graph database
下载PDF
Fault Coverage-Based Test Case Prioritization and Selection Using African Buffalo Optimization
2
作者 Shweta Singhal Nishtha Jatana +3 位作者 ahmad f subahi Charu Gupta Osamah Ibrahim Khalaf Youseef Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第3期6755-6774,共20页
Software needs modifications and requires revisions regularly.Owing to these revisions,retesting software becomes essential to ensure that the enhancements made,have not affected its bug-free functioning.The time and ... Software needs modifications and requires revisions regularly.Owing to these revisions,retesting software becomes essential to ensure that the enhancements made,have not affected its bug-free functioning.The time and cost incurred in this process,need to be reduced by the method of test case selection and prioritization.It is observed that many nature-inspired techniques are applied in this area.African Buffalo Optimization is one such approach,applied to regression test selection and prioritization.In this paper,the proposed work explains and proves the applicability of the African Buffalo Optimization approach to test case selection and prioritization.The proposed algorithm converges in polynomial time(O(n^(2))).In this paper,the empirical evaluation of applying African Buffalo Optimization for test case prioritization is done on sample data set with multiple iterations.An astounding 62.5%drop in size and a 48.57%drop in the runtime of the original test suite were recorded.The obtained results are compared with Ant Colony Optimization.The comparative analysis indicates that African Buffalo Optimization and Ant Colony Optimization exhibit similar fault detection capabilities(80%),and a reduction in the overall execution time and size of the resultant test suite.The results and analysis,hence,advocate and encourages the use of African Buffalo Optimization in the area of test case selection and prioritization. 展开更多
关键词 Test case prioritization regression testing test case selection African buffalo optimization nature-inspired META-HEURISTIC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部