The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular valu...The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.展开更多
This paper presents a new control strategy for the rotor side converter of Doubly-Fed Induction Generator based Wind Turbine systems,under severe voltage dips.The main goal is to fulfill the Low Voltage Ride Through p...This paper presents a new control strategy for the rotor side converter of Doubly-Fed Induction Generator based Wind Turbine systems,under severe voltage dips.The main goal is to fulfill the Low Voltage Ride Through performance,required by modern grid codes.In this respect,the key point is to limit oscillations(particularly on rotor currents)triggered by line faults,so that the system keeps operating with graceful behavior.To this aim,a suitable feedforward-feedback control solution is proposed for the DFIG rotor side.The feedforward part exploits oscillation-free reference trajectories,analytically derived for the system internal dynamics.State feedback,designed accounting for control voltage limits,endows the system with robustness and further tame oscillations during faults.Moreover,improved torque and stator reactive power tracking during faults is achieved,proposing an exact mapping between such quantities and rotor-side currents,which are conventionally used as controlled outputs.Numerical simulations are provided to validate the capability of the proposed approach to effectively cope with harsh faults.展开更多
文摘The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.
文摘This paper presents a new control strategy for the rotor side converter of Doubly-Fed Induction Generator based Wind Turbine systems,under severe voltage dips.The main goal is to fulfill the Low Voltage Ride Through performance,required by modern grid codes.In this respect,the key point is to limit oscillations(particularly on rotor currents)triggered by line faults,so that the system keeps operating with graceful behavior.To this aim,a suitable feedforward-feedback control solution is proposed for the DFIG rotor side.The feedforward part exploits oscillation-free reference trajectories,analytically derived for the system internal dynamics.State feedback,designed accounting for control voltage limits,endows the system with robustness and further tame oscillations during faults.Moreover,improved torque and stator reactive power tracking during faults is achieved,proposing an exact mapping between such quantities and rotor-side currents,which are conventionally used as controlled outputs.Numerical simulations are provided to validate the capability of the proposed approach to effectively cope with harsh faults.