期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
经形变热处理铜基形状记忆合金的晶粒生长、形状记忆和腐蚀行为(英文) 被引量:1
1
作者 ahmad ostovari moghaddam Mostafa KETABCHI Reza BAHRAMI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2896-2904,共9页
比较研究了Cu-11.8%Al-3.7%Ni-1%Mn和Cu-11%Al-5.6%Mn形状记忆合金(SMAS)的形状记忆、腐蚀性能。采用光学显微镜(OM)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)、动电位极化、弯曲和拉伸试验,研究了晶粒细化对这些性能的影响。在800&#... 比较研究了Cu-11.8%Al-3.7%Ni-1%Mn和Cu-11%Al-5.6%Mn形状记忆合金(SMAS)的形状记忆、腐蚀性能。采用光学显微镜(OM)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)、动电位极化、弯曲和拉伸试验,研究了晶粒细化对这些性能的影响。在800°C退火时,在首先的15 s内静态再结晶和动态晶粒长达显示出一个快速的再结晶过程,随后才是晶粒生长。退火15 s后得到的Cu-Al-Ni-Mn和Cu-Al-Mn合金的最小晶粒尺寸分别为90μm和260μm。拉伸试验表明2种合金呈现典型的三阶段曲线,由此可以看出,晶粒细化后合金具有高的断裂应力和应变。显微组织表明,Cu-Al-Ni-Mn合金中存在锯齿状的1??马氏体形态,通过差示扫描量热法也证实了1??和1??共存于Cu-Al-Mn合金中。评估了形变热处理前、后及800°C退火15 min,随后进行水淬的合金的形状记忆性能。另外,采用动电位极化法分析了晶粒细化后合金的腐蚀行为。结果表明,铜溶解过程中主要为阳极反应,Cu-Al-Ni-Mn合金比Cu-Al-Mn合金具有更好的耐腐蚀性。 展开更多
关键词 形状记忆合金(SMAs) 晶粒细化 腐蚀 形状记忆性能
下载PDF
Zn_(1+x)Sb二元体系的相形成和热电性能
2
作者 ahmad ostovari moghaddam Evgeny TROFIMOV +2 位作者 Ting ZHANG Jordi ARBIOL Andreu CABOT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期753-763,共11页
在Zn−Sb二元相图固相线以下使Zn和Sb粉末反应并随炉冷却,合成一系列Zn_(1+x)Sb(x=0,0.05,0.1,0.15,0.25,0.3)材料,分析Zn–Sb相图中心区域的相形成和热电性能。在此过程中,非化学计量比的混合粉末结晶形成ZnSb和β-Zn_(4)Sb_(3)相的组... 在Zn−Sb二元相图固相线以下使Zn和Sb粉末反应并随炉冷却,合成一系列Zn_(1+x)Sb(x=0,0.05,0.1,0.15,0.25,0.3)材料,分析Zn–Sb相图中心区域的相形成和热电性能。在此过程中,非化学计量比的混合粉末结晶形成ZnSb和β-Zn_(4)Sb_(3)相的组合。然后,将材料研磨并热压成致密的ZnSb/β-Zn_(4)Sb_(3)复合材料。X射线衍射、高分辨率透射电镜和电子能量损失谱分析均未发现Sb、Zn元素或其他相。所有材料的热电性能都可以归结为ZnSb和β-Zn_(4)Sb_(3)相的热电行为的结合,并由每种材料中的主相所决定,Zn1.3Sb复合材料具有最好的热电性能。研究发现,Ge掺杂可大幅增加Zn1.3Sb的Seebeck系数且显著提高其功率因数,540 K时达1.51 mW·m−1·K−2。总之,Zn1.28Ge0.02Sb具有优异、稳定的ZT值,650 K时为1.17。 展开更多
关键词 Zn_(1+x)Sb ZnSb/β-Zn_(4)Sb_(3)复合材料 热稳定性 热电性能
下载PDF
Additive manufacturing of high entropy alloys:A practical review 被引量:12
3
作者 ahmad ostovari moghaddam Nataliya A.Shaburova +2 位作者 Marina N.Samodurova Amin Abdollahzadeh Evgeny A.Trofimov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第18期131-162,共32页
The novel idea of alloying,which is based on the utilization of multiple principal elements in high concentrations,has created a novel class of promising materials called high entropy alloys(HEAs).So far,several HEAs ... The novel idea of alloying,which is based on the utilization of multiple principal elements in high concentrations,has created a novel class of promising materials called high entropy alloys(HEAs).So far,several HEAs with outstanding properties beyond those of conventional alloys have been discovered,and new superior high-entropy alloys are still expected to be developed in the future.However,the fabrication process of HEAs through conventional manufacturing techniques suffers from significant limitations due to the intrinsic requirements of HEAs.Additive manufacturing(AM),on the other hand,has provided new opportunities for fabricating geometrically complex HEAs with the possibility of in situ tailoring of their microstructure features.Considering the growing interest in AM of HEAs during most recent years,this review article aims at providing the state of the art in AM of HEAs.It describes the feedstock requirements for laser based AM techniques.Thereafter,a comprehensive picture of the current state of nearly all HEAs processed by laser metal deposition(LMD),selective laser melting(SLM)and selective electron beam melting(SEBM)is presented.Special attention is paid to the features of AM derived microstructures along with their outstanding properties and underlying mechanisms for various material processing combinations.The AM of interstitial solute hardening HEAs,HEA matrix composites as well as non-beam based AM of HEAs will also be addressed.The post-AM treatments and the strategies to fabricate defect-free HEAs are summarized.Finally,a conclusion of current state and future prospects of additive manufacturing of HEAs will be presented. 展开更多
关键词 High entropy alloys Additive manufacturing MICROSTRUCTURE Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部