The influences of the convective boundary condition and heat generation/absorption on magnetohydro- dynamic boundary layer flow of a Maxwell fluid over a stretching surface in the presence of nanoparticles have been n...The influences of the convective boundary condition and heat generation/absorption on magnetohydro- dynamic boundary layer flow of a Maxwell fluid over a stretching surface in the presence of nanoparticles have been numerically investigated. In the model, the physical mechanisms responsible for Brownian motion and thermophoresis with a chemical reaction are considered. Similarity equations are derived and then solved using the shooting method with the fourth-order Runge-Kutta integration scheme, The rates of heat and mass transfer are enhanced with a destructive chemical reaction and Blot number. The opposite influence is found with a generative chemical reaction in the presence of Brownian motion and the thermophoretic property.展开更多
文摘The influences of the convective boundary condition and heat generation/absorption on magnetohydro- dynamic boundary layer flow of a Maxwell fluid over a stretching surface in the presence of nanoparticles have been numerically investigated. In the model, the physical mechanisms responsible for Brownian motion and thermophoresis with a chemical reaction are considered. Similarity equations are derived and then solved using the shooting method with the fourth-order Runge-Kutta integration scheme, The rates of heat and mass transfer are enhanced with a destructive chemical reaction and Blot number. The opposite influence is found with a generative chemical reaction in the presence of Brownian motion and the thermophoretic property.