Direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide over Co1.5PW12O40 in liquid and in gas phase is investigated. The synthesized catalyst has been characterized by means of FTIR and XRD. L...Direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide over Co1.5PW12O40 in liquid and in gas phase is investigated. The synthesized catalyst has been characterized by means of FTIR and XRD. Liquid phase experiment results showed that high pressures are favorable for the synthesis of DMC. However, DMC formation is limited by the reaction with co-produced water. DMC selectivity is more strongly dependent on the temperature than on the pressure of CO2. As for the reactions in gas phase, it has been found that both CH3OH conversion and DMC selectivity decreased with increasing temperature, owing to the decomposition of DMC at high temperatures. High temperatures and more amount of Co1.5PW12O40 catalyst favor the formation of dimethoxymethane (DMM) and methyl formate (MF).展开更多
Three Keggin-type heteropolyanions, namely H3PMo12O40-13H2O, (NH4)3PMo12O40·4H2O and H3PW12O40·13H2O were prepared and tested in the ring-opening polymerization reaction of tetrahydrofuran. The effects of ...Three Keggin-type heteropolyanions, namely H3PMo12O40-13H2O, (NH4)3PMo12O40·4H2O and H3PW12O40·13H2O were prepared and tested in the ring-opening polymerization reaction of tetrahydrofuran. The effects of the counter-cation (H+, NH4+) and the peripheral atoms (Mo, W) on the polymerization were investigated. It has been found that when the protons of H3PMo12O40·13H2O were replaced by the ammonium cations the polymerization rate decreased dramatically. Whereas, when the peripheral atoms (Mo) were replaced by their homologous (W), the polymerization rate increased twofold. As for the viscosity average molecular weight (My) of polymer products, it was found that the high molecular weight (7930) was obtained by using H3PW12O40·13H2O. The molecular weight (My) obtained by H3PMo12O40·13H2O and (NH4)H3PMo12O40·13H2O was 6470 and 6810, respectively.展开更多
Molybdenum based oxide catalysts Mo-H,Mo-Fe,Mo-Ce,and Mo-Sn were prepared by calcining H3PMo12O40,Fe1.5 PMo 12O40,Ce1.5PMo12O40,and Sn1.5 PMo12O40 heteropolyanion precursors at700℃,respectively.The prepared oxides ha...Molybdenum based oxide catalysts Mo-H,Mo-Fe,Mo-Ce,and Mo-Sn were prepared by calcining H3PMo12O40,Fe1.5 PMo 12O40,Ce1.5PMo12O40,and Sn1.5 PMo12O40 heteropolyanion precursors at700℃,respectively.The prepared oxides have been characterized and tested for the dehydrogenation of isobutane(IB)to isobutene in the presence of CO2.The effects of temperature,time on stream,and CO2 /IB ratio were investigated.It was found that α-and-MoO3 phases were present in all catalysts.Catalytic tests showed that increasing the reaction temperature increased both the conversion and isobutene selectivity,whereas increasing the CO2 /IB molar ratio increased the conversion but decreased the selectivity for isobutene.Iron was found to be an effective additive element for the enhancement of catalytic activity compared with Ce and Sn.展开更多
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project (No. RGP-VPP-116)
文摘Direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide over Co1.5PW12O40 in liquid and in gas phase is investigated. The synthesized catalyst has been characterized by means of FTIR and XRD. Liquid phase experiment results showed that high pressures are favorable for the synthesis of DMC. However, DMC formation is limited by the reaction with co-produced water. DMC selectivity is more strongly dependent on the temperature than on the pressure of CO2. As for the reactions in gas phase, it has been found that both CH3OH conversion and DMC selectivity decreased with increasing temperature, owing to the decomposition of DMC at high temperatures. High temperatures and more amount of Co1.5PW12O40 catalyst favor the formation of dimethoxymethane (DMM) and methyl formate (MF).
基金supported by the Deanship of Scientific Research,King Saud University(No.M/202) and SABIC Company
文摘Three Keggin-type heteropolyanions, namely H3PMo12O40-13H2O, (NH4)3PMo12O40·4H2O and H3PW12O40·13H2O were prepared and tested in the ring-opening polymerization reaction of tetrahydrofuran. The effects of the counter-cation (H+, NH4+) and the peripheral atoms (Mo, W) on the polymerization were investigated. It has been found that when the protons of H3PMo12O40·13H2O were replaced by the ammonium cations the polymerization rate decreased dramatically. Whereas, when the peripheral atoms (Mo) were replaced by their homologous (W), the polymerization rate increased twofold. As for the viscosity average molecular weight (My) of polymer products, it was found that the high molecular weight (7930) was obtained by using H3PW12O40·13H2O. The molecular weight (My) obtained by H3PMo12O40·13H2O and (NH4)H3PMo12O40·13H2O was 6470 and 6810, respectively.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project No RGP-VPP-025
文摘Molybdenum based oxide catalysts Mo-H,Mo-Fe,Mo-Ce,and Mo-Sn were prepared by calcining H3PMo12O40,Fe1.5 PMo 12O40,Ce1.5PMo12O40,and Sn1.5 PMo12O40 heteropolyanion precursors at700℃,respectively.The prepared oxides have been characterized and tested for the dehydrogenation of isobutane(IB)to isobutene in the presence of CO2.The effects of temperature,time on stream,and CO2 /IB ratio were investigated.It was found that α-and-MoO3 phases were present in all catalysts.Catalytic tests showed that increasing the reaction temperature increased both the conversion and isobutene selectivity,whereas increasing the CO2 /IB molar ratio increased the conversion but decreased the selectivity for isobutene.Iron was found to be an effective additive element for the enhancement of catalytic activity compared with Ce and Sn.