Progressively anthropogenic intrusion and increasing water demand necessitate frequent water quality monitoring for sustainability management. Unlike laborious, time consuming field-based measurements, remote sensing-...Progressively anthropogenic intrusion and increasing water demand necessitate frequent water quality monitoring for sustainability management. Unlike laborious, time consuming field-based measurements, remote sensing-based water quality retrieval proved promising to overcome difficulties with temporal and spatial coverage. However, remotely estimated water quality parameters are mostly related to visibility characteristic and optically active property of water. This study presents results of an investigated approach to derive oxygen-related water quality parameter, namely Dissolved Oxygen (DO), in a shallow inland water body from satellite imagery. The approach deduces DO levels based on interrelated optical properties that dictate oxygen consumption and release in waters. Comparative analysis of multiple regression algorithms was carried out, using various combinations of parameters;namely, Turbidity, Total Suspended Solids (TSS), Chlorophyll-a, and Temperature. To cover the wide range of conditions that is experienced by Edku coastal lake, ground truth measurements covering the four seasons were used with corresponding satellite imageries. While results show successful statistically significant correlation in certain combinations considered, yet optimal results were concluded with Turbidity and natural logarithm of temperature. The algorithm model was developed with summer and fall data (R2 0.79), then validated with winter and spring data (R2 0.67). Retrieved DO concentrations highlighted the variability in pollution degree and zonation nature within that coastal lake, as related to boundary interactions and irregularity in flow dynamics within. The approach presented in this study encourages expanded applications with space-based earth observation products for exploring non-detectable water quality parameters that are interlinked with optically active properties in water.展开更多
文摘Progressively anthropogenic intrusion and increasing water demand necessitate frequent water quality monitoring for sustainability management. Unlike laborious, time consuming field-based measurements, remote sensing-based water quality retrieval proved promising to overcome difficulties with temporal and spatial coverage. However, remotely estimated water quality parameters are mostly related to visibility characteristic and optically active property of water. This study presents results of an investigated approach to derive oxygen-related water quality parameter, namely Dissolved Oxygen (DO), in a shallow inland water body from satellite imagery. The approach deduces DO levels based on interrelated optical properties that dictate oxygen consumption and release in waters. Comparative analysis of multiple regression algorithms was carried out, using various combinations of parameters;namely, Turbidity, Total Suspended Solids (TSS), Chlorophyll-a, and Temperature. To cover the wide range of conditions that is experienced by Edku coastal lake, ground truth measurements covering the four seasons were used with corresponding satellite imageries. While results show successful statistically significant correlation in certain combinations considered, yet optimal results were concluded with Turbidity and natural logarithm of temperature. The algorithm model was developed with summer and fall data (R2 0.79), then validated with winter and spring data (R2 0.67). Retrieved DO concentrations highlighted the variability in pollution degree and zonation nature within that coastal lake, as related to boundary interactions and irregularity in flow dynamics within. The approach presented in this study encourages expanded applications with space-based earth observation products for exploring non-detectable water quality parameters that are interlinked with optically active properties in water.