<span style="line-height:1.5;font-family:Verdana;">In the present work</span><span style="line-height:1.5;font-family:Verdana;">,</span><span "="" style=&q...<span style="line-height:1.5;font-family:Verdana;">In the present work</span><span style="line-height:1.5;font-family:Verdana;">,</span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;"> lignin is isolated from three different agro-industrial waste, sweet sorghum, rice straw and sugarcane bagasse using </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> sodium hydroxide-sodium bisulfate methodology. Characterization was performed using fourier transform infrared analysis (FTIR), scan electron microscopy (SEM), thermo gravimetric analysis (TGA). The SEM micrographs showed sponge-like structure except for sugarcane bagasse lignin reveals rock-like structure. The FTIR indicates the presence of hydroxyl, carbonyl and methoxyl groups in the lignin structure. TGA thermograms were relatively same and sugarcane bagasse lignin was found the most thermally stable up to 201<span style="white-space:nowrap;">˚</span>C as compared to both of soda and kraft sugarcane bagasse lignin and its maximal temperature degradation rate DTG</span><sub><span style="font-family:Verdana;">max</span></sub><span style="font-family:Verdana;"> was found at 494<span style="white-space:nowrap;">˚</span>C while 450<span style="white-space:nowrap;">˚</span>C, 464<span style="white-space:nowrap;">˚</span>C in addition to thermal stabilities up to 173<span style="white-space:nowrap;">˚</span>C and 180<span style="white-space:nowrap;">˚</span>C for sweet sorghum and rice straw lignins respectively. All lignins exhibited low percentage of bio-char less than 10% remained unvalotilized at the end of the thermogravimetric analysis at 800<span style="white-space:nowrap;">˚</span>C in nitrogen atmosphere</span></span><span style="line-height:1.5;font-family:Verdana;">,</span><span style="line-height:1.5;font-family:Verdana;"> reveal</span><span style="line-height:1.5;font-family:Verdana;">ing</span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;"> a high conversion yield into volatiles. Moreover, all lignin samples depicted higher cytotoxic potential towards lung cancer cell line (A549), IC</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;">: 12</span></span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">-</span><span "="" style="line-height:1.5;"> </span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;">17 μg/ml. These findings suggest that the </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> separated lignins would be good candidates for pyrolysis, polymer composites preparations and seem to be promising natural anti-cancer agents despite its main utilization as </span></span><span style="line-height:1.5;font-family:Verdana;">the</span><span style="line-height:1.5;font-family:Verdana;"> caner drug delivery substrates.展开更多
文摘<span style="line-height:1.5;font-family:Verdana;">In the present work</span><span style="line-height:1.5;font-family:Verdana;">,</span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;"> lignin is isolated from three different agro-industrial waste, sweet sorghum, rice straw and sugarcane bagasse using </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> sodium hydroxide-sodium bisulfate methodology. Characterization was performed using fourier transform infrared analysis (FTIR), scan electron microscopy (SEM), thermo gravimetric analysis (TGA). The SEM micrographs showed sponge-like structure except for sugarcane bagasse lignin reveals rock-like structure. The FTIR indicates the presence of hydroxyl, carbonyl and methoxyl groups in the lignin structure. TGA thermograms were relatively same and sugarcane bagasse lignin was found the most thermally stable up to 201<span style="white-space:nowrap;">˚</span>C as compared to both of soda and kraft sugarcane bagasse lignin and its maximal temperature degradation rate DTG</span><sub><span style="font-family:Verdana;">max</span></sub><span style="font-family:Verdana;"> was found at 494<span style="white-space:nowrap;">˚</span>C while 450<span style="white-space:nowrap;">˚</span>C, 464<span style="white-space:nowrap;">˚</span>C in addition to thermal stabilities up to 173<span style="white-space:nowrap;">˚</span>C and 180<span style="white-space:nowrap;">˚</span>C for sweet sorghum and rice straw lignins respectively. All lignins exhibited low percentage of bio-char less than 10% remained unvalotilized at the end of the thermogravimetric analysis at 800<span style="white-space:nowrap;">˚</span>C in nitrogen atmosphere</span></span><span style="line-height:1.5;font-family:Verdana;">,</span><span style="line-height:1.5;font-family:Verdana;"> reveal</span><span style="line-height:1.5;font-family:Verdana;">ing</span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;"> a high conversion yield into volatiles. Moreover, all lignin samples depicted higher cytotoxic potential towards lung cancer cell line (A549), IC</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;">: 12</span></span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">-</span><span "="" style="line-height:1.5;"> </span><span "="" style="line-height:1.5;"><span style="font-family:Verdana;">17 μg/ml. These findings suggest that the </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> separated lignins would be good candidates for pyrolysis, polymer composites preparations and seem to be promising natural anti-cancer agents despite its main utilization as </span></span><span style="line-height:1.5;font-family:Verdana;">the</span><span style="line-height:1.5;font-family:Verdana;"> caner drug delivery substrates.