In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of orienta...In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.展开更多
This paper deals with a dynamic analysis of an optimal technique used for direct electrical energy storage, where a concept of charge transfer between different electric storage units is used. This analysis is develop...This paper deals with a dynamic analysis of an optimal technique used for direct electrical energy storage, where a concept of charge transfer between different electric storage units is used. This analysis is developed to seek for efficient and real time conditions to maintain optimal behavior for charge recovery from intermittent power sources in the field of renewable energies like solar and wind. The proposed analysis leads to elaborating a set of interesting states and conditions that allows the user to choose effective configuration parameters that lead to an optimal or near optimal charge transfer device. The proposed device is designed to ensure an optimal transfer of electric charges. It must be self-configured to retrieve and transfer the maximum energy from the sources to the storage units (Super-capacitors, batteries…). Some interesting results, by simulating the proposed device, are presented to show how this optimization problem can be viewed as a combinatorial one, where the optimization algorithm is asked to find the suitable switching combination to configure the device to be closest to the optimal charge recovery.展开更多
文摘In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.
文摘This paper deals with a dynamic analysis of an optimal technique used for direct electrical energy storage, where a concept of charge transfer between different electric storage units is used. This analysis is developed to seek for efficient and real time conditions to maintain optimal behavior for charge recovery from intermittent power sources in the field of renewable energies like solar and wind. The proposed analysis leads to elaborating a set of interesting states and conditions that allows the user to choose effective configuration parameters that lead to an optimal or near optimal charge transfer device. The proposed device is designed to ensure an optimal transfer of electric charges. It must be self-configured to retrieve and transfer the maximum energy from the sources to the storage units (Super-capacitors, batteries…). Some interesting results, by simulating the proposed device, are presented to show how this optimization problem can be viewed as a combinatorial one, where the optimization algorithm is asked to find the suitable switching combination to configure the device to be closest to the optimal charge recovery.