In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e...In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.展开更多
The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic languag...The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.展开更多
Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Tr...Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.展开更多
The skeletal bone age assessment(BAA)was extremely implemented in development prediction and auxiliary analysis of medicinal issues.X-ray images of hands were detected from the estimation of bone age,whereas the ossif...The skeletal bone age assessment(BAA)was extremely implemented in development prediction and auxiliary analysis of medicinal issues.X-ray images of hands were detected from the estimation of bone age,whereas the ossification centers of epiphysis and carpal bones are important regions.The typical skeletal BAA approaches remove these regions for predicting the bone age,however,few of them attain suitable efficacy or accuracy.Automatic BAA techniques with deep learning(DL)methods are reached the leading efficiency on manual and typical approaches.Therefore,this study introduces an intellectual skeletal bone age assessment and classification with the use of metaheuristic with deep learning(ISBAAC-MDL)model.The presented ISBAAC-MDL technique majorly focuses on the identification of bone age prediction and classification process.To attain this,the presented ISBAAC-MDL model derives a mask Region-related Convolutional Neural Network(Mask-RCNN)with MobileNet as baseline model to extract features.Followed by,the whale optimization algorithm(WOA)is implemented for hyperparameter tuning of the MobileNet method.At last,Deep Feed-Forward Module(DFFM)based age prediction and Radial Basis Function Neural Network(RBFNN)based stage classification approach is utilized.The experimental evaluation of the ISBAAC-MDL model is tested using benchmark dataset and the outcomes are assessed over distinct factors.The experimental outcomes reported the better performances of the ISBAACMDL model over recent approaches with maximum accuracy of 0.9920.展开更多
Osteosarcoma is a type of malignant bone tumor that is reported across the globe.Recent advancements in Machine Learning(ML)and Deep Learning(DL)models enable the detection and classification of malignancies in biomed...Osteosarcoma is a type of malignant bone tumor that is reported across the globe.Recent advancements in Machine Learning(ML)and Deep Learning(DL)models enable the detection and classification of malignancies in biomedical images.In this regard,the current study introduces a new Biomedical Osteosarcoma Image Classification using Elephant Herd Optimization and Deep Transfer Learning(BOIC-EHODTL)model.The presented BOIC-EHODTL model examines the biomedical images to diagnose distinct kinds of osteosarcoma.At the initial stage,Gabor Filter(GF)is applied as a pre-processing technique to get rid of the noise from images.In addition,Adam optimizer with MixNet model is also employed as a feature extraction technique to generate feature vectors.Then,EHOalgorithm is utilized along with Adaptive Neuro-Fuzzy Classifier(ANFC)model for recognition and categorization of osteosarcoma.EHO algorithm is utilized to fine-tune the parameters involved in ANFC model which in turn helps in accomplishing improved classification results.The design of EHO with ANFC model for classification of osteosarcoma is the novelty of current study.In order to demonstrate the improved performance of BOIC-EHODTL model,a comprehensive comparison was conducted between the proposed and existing models upon benchmark dataset and the results confirmed the better performance of BOIC-EHODTL model over recent methodologies.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR26).
文摘In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR31)。
文摘The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.
文摘Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR17).
文摘The skeletal bone age assessment(BAA)was extremely implemented in development prediction and auxiliary analysis of medicinal issues.X-ray images of hands were detected from the estimation of bone age,whereas the ossification centers of epiphysis and carpal bones are important regions.The typical skeletal BAA approaches remove these regions for predicting the bone age,however,few of them attain suitable efficacy or accuracy.Automatic BAA techniques with deep learning(DL)methods are reached the leading efficiency on manual and typical approaches.Therefore,this study introduces an intellectual skeletal bone age assessment and classification with the use of metaheuristic with deep learning(ISBAAC-MDL)model.The presented ISBAAC-MDL technique majorly focuses on the identification of bone age prediction and classification process.To attain this,the presented ISBAAC-MDL model derives a mask Region-related Convolutional Neural Network(Mask-RCNN)with MobileNet as baseline model to extract features.Followed by,the whale optimization algorithm(WOA)is implemented for hyperparameter tuning of the MobileNet method.At last,Deep Feed-Forward Module(DFFM)based age prediction and Radial Basis Function Neural Network(RBFNN)based stage classification approach is utilized.The experimental evaluation of the ISBAAC-MDL model is tested using benchmark dataset and the outcomes are assessed over distinct factors.The experimental outcomes reported the better performances of the ISBAACMDL model over recent approaches with maximum accuracy of 0.9920.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(42/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR16).
文摘Osteosarcoma is a type of malignant bone tumor that is reported across the globe.Recent advancements in Machine Learning(ML)and Deep Learning(DL)models enable the detection and classification of malignancies in biomedical images.In this regard,the current study introduces a new Biomedical Osteosarcoma Image Classification using Elephant Herd Optimization and Deep Transfer Learning(BOIC-EHODTL)model.The presented BOIC-EHODTL model examines the biomedical images to diagnose distinct kinds of osteosarcoma.At the initial stage,Gabor Filter(GF)is applied as a pre-processing technique to get rid of the noise from images.In addition,Adam optimizer with MixNet model is also employed as a feature extraction technique to generate feature vectors.Then,EHOalgorithm is utilized along with Adaptive Neuro-Fuzzy Classifier(ANFC)model for recognition and categorization of osteosarcoma.EHO algorithm is utilized to fine-tune the parameters involved in ANFC model which in turn helps in accomplishing improved classification results.The design of EHO with ANFC model for classification of osteosarcoma is the novelty of current study.In order to demonstrate the improved performance of BOIC-EHODTL model,a comprehensive comparison was conducted between the proposed and existing models upon benchmark dataset and the results confirmed the better performance of BOIC-EHODTL model over recent methodologies.