The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service ...The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio;some are extensions of 4G and, some are developed explicitly for 5G. These candidate technologies include non-Orthogonal Multiple Access (NOMA), and Low Density Parity Check (LDPC) channel coding. In addition, deploying software defined radio (SDR) instead of traditional hardware modules. In this paper we build an open source SDR-based platform to realize the transceiver of the physical downlink shared channel (PDSCH) of 5G NR according to Third Generation Partnership Project (3GPP) standard. We provide a prototype for pairing between two 5G users using NOMA technique. In addition, a suitable design for LDPC channel coding is performed. The intermediate stage of segmentation, rate matching and interleaving are also carried out in order to realize a standard NR frame. Finally, experiments are carried out in both simulation and real time scenario on the designed 5G NR for the purpose of system performance evaluation, and to demonstrate its potential in meeting future 5G mobile network challenges.展开更多
文摘The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio;some are extensions of 4G and, some are developed explicitly for 5G. These candidate technologies include non-Orthogonal Multiple Access (NOMA), and Low Density Parity Check (LDPC) channel coding. In addition, deploying software defined radio (SDR) instead of traditional hardware modules. In this paper we build an open source SDR-based platform to realize the transceiver of the physical downlink shared channel (PDSCH) of 5G NR according to Third Generation Partnership Project (3GPP) standard. We provide a prototype for pairing between two 5G users using NOMA technique. In addition, a suitable design for LDPC channel coding is performed. The intermediate stage of segmentation, rate matching and interleaving are also carried out in order to realize a standard NR frame. Finally, experiments are carried out in both simulation and real time scenario on the designed 5G NR for the purpose of system performance evaluation, and to demonstrate its potential in meeting future 5G mobile network challenges.