Fires have a noteworthy role to play with regards to ecological and environmental losses in Mediterranean forests. In addition to ecological impacts, fire may create economic, social as well as cultural changes. The d...Fires have a noteworthy role to play with regards to ecological and environmental losses in Mediterranean forests. In addition to ecological impacts, fire may create economic, social as well as cultural changes. The detection of fire-scars has critical importance to help decrease losses.In the present study, forest fires recorded in Antalya, one of the most important ecological and tourist regions within the Western Mediterranean, were clustered and mapped. Since the dominant factors and devastation records derived from the cases had nominal-scaled properties, a categorical databased nonparametric clustering algorithm was performed in this evaluation. The proposed tool, k-modes algorithm,uses modes instead of means for clustering. The algorithm may be implemented quickly and does not make distributional assumptions concerning the available data. It uses a frequency-based method to update the modes of the fires.The derived modes from the maps may be useful information for local authorities to manage. In conclusion, the proposed nonparametric clustering procedure may be employed to build a decision-support system to monitor and identify fire activities and to enhance fire management efficiency.展开更多
文摘Fires have a noteworthy role to play with regards to ecological and environmental losses in Mediterranean forests. In addition to ecological impacts, fire may create economic, social as well as cultural changes. The detection of fire-scars has critical importance to help decrease losses.In the present study, forest fires recorded in Antalya, one of the most important ecological and tourist regions within the Western Mediterranean, were clustered and mapped. Since the dominant factors and devastation records derived from the cases had nominal-scaled properties, a categorical databased nonparametric clustering algorithm was performed in this evaluation. The proposed tool, k-modes algorithm,uses modes instead of means for clustering. The algorithm may be implemented quickly and does not make distributional assumptions concerning the available data. It uses a frequency-based method to update the modes of the fires.The derived modes from the maps may be useful information for local authorities to manage. In conclusion, the proposed nonparametric clustering procedure may be employed to build a decision-support system to monitor and identify fire activities and to enhance fire management efficiency.