Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the...Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the interaction between doped boron and matrix materials on NRR catalytic performance is still unclear,which is limiting the development of catalysts containing boron for NRR.Here,NRR on different boron-doped twodimensional(2D)materials was explored by first principle theory.It is found that adsorption energy of intermediate*NNH(E*NNH)can be used as a descriptor to characterize the catalytic activity for NRR.Boron-adsorbed black phosphorus(B-BP)is demonstrated showing excellent NRR catalytic activity and suppressing hydrogen evolution reaction.It is disclosed that the excellent catalytic performance of boron-doped structures comes from a proper quantitatively electron transfer(0.8e)between nitrogen in*NNH and the active site boron atom.This work not only established a descriptor for NRR catalytic activity on B-doped 2D materials,but also screened out a potential NRR catalyst.More importantly,the intrinsic reason and mechanism of high catalytic activity of boron-doped structures were proposed.This work provides a design principle for exploring high-performance NRR electrocatalysts containing boron.展开更多
基金fiancially supported by the National Natural Science Foundation of China(No.52073020)the Fundamental Research Funds for the Central Universities(No.buctrc202008)。
文摘Electrocatalytic nitrogen reduction reaction(NRR)is a key process for producing energy efficient and environment friendly ammonia.Boron-doped two-dimensional materials are highly promising as NRR catalysts.However,the interaction between doped boron and matrix materials on NRR catalytic performance is still unclear,which is limiting the development of catalysts containing boron for NRR.Here,NRR on different boron-doped twodimensional(2D)materials was explored by first principle theory.It is found that adsorption energy of intermediate*NNH(E*NNH)can be used as a descriptor to characterize the catalytic activity for NRR.Boron-adsorbed black phosphorus(B-BP)is demonstrated showing excellent NRR catalytic activity and suppressing hydrogen evolution reaction.It is disclosed that the excellent catalytic performance of boron-doped structures comes from a proper quantitatively electron transfer(0.8e)between nitrogen in*NNH and the active site boron atom.This work not only established a descriptor for NRR catalytic activity on B-doped 2D materials,but also screened out a potential NRR catalyst.More importantly,the intrinsic reason and mechanism of high catalytic activity of boron-doped structures were proposed.This work provides a design principle for exploring high-performance NRR electrocatalysts containing boron.