In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in...In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment,effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures.However,unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature.Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions.Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to pGaN side through the(8-plane rather than the V-shape pits,which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN.Within this framework,apparently disparate experimental observations regarding electroluminescence properties,in this work,are well reconciled.展开更多
基金Supported by the National Key R&D Program of China under Grant Nos 2016YFB0400600 and 2016YFB0400601the State Key Program of the National Natural Science of China under Grant No 61334001+2 种基金the Key R&D Program of Jiangxi Province under Grant No 20165ABC28007the Natural Science Foundation of Jiangxi Province under Grant No 20151BAB207053the National Natural Science Foundation of China under Grant No 21405076
文摘In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment,effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures.However,unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature.Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions.Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to pGaN side through the(8-plane rather than the V-shape pits,which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN.Within this framework,apparently disparate experimental observations regarding electroluminescence properties,in this work,are well reconciled.