Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of th...Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of this study was to find an optimal time point for cell transplantation. Methods: MSCs were isolated and cultured from Sprague-Dawley (SD) rats. MI model was set up in SD rats by permanent ligation of left anterior descending coronary artery. MSCs were directly injected into the infarct border zone at 1 h, 1 week and 2 weeks after MI, respectively. Sham-operated and MI control groups received equal volume of phosphate buffered saline (PBS). At 4 weeks after MI, cardiac function was assessed by echocardiography; vessel density was analyzed on hematoxylin-eosin stained slides by light microscopy; the apoptosis of cardiomyocytes was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay; the expressions of proteins were analyzed by Western blot. Results: MSC transplantation improved cardiac function, reduced the apoptosis of cardiomyocytes and increased vessel density. These benefits were more obvious in 1-week group than in 1-h and 2-week groups. There are more obvious in-creases in the ratio of bcl-2/bax and the expression of vascular endothelial growth factor (VEGF) and more obvious decreases in the expression of cleaved-caspase-3 in 1-week group than those in other two groups. Conclusion: MSC transplantation was beneficial for the recovery of cardiac function. MSC transplantation at 1 week post-MI exerted the best effects on increases of cardiac function, anti-apoptosis and angiogenesis.展开更多
Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly ex...Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 x 10^3, high fracture strength of 4.2 GPa and good plastic strAln of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties.展开更多
The effects of ribbon thickness(t)on the structure and magnetic properties of a Fe_(82.3)B_(13)Cu_(1.7)Nb_(3) alloy in melt-spun and annealed states have been investigated.Increasing the t from 15 to 23μm changes the...The effects of ribbon thickness(t)on the structure and magnetic properties of a Fe_(82.3)B_(13)Cu_(1.7)Nb_(3) alloy in melt-spun and annealed states have been investigated.Increasing the t from 15 to 23μm changes the structure of the melt-spun ribbons from a single amorphous phase to a composite with denseα-Fe nanograins embedded in the amorphous matrix.The grain size(D_(α-Fe))of theα-Fe near the free surface of the ribbon is about 6.7 nm,and it gradually decreases along the cross section toward the wheel-contacted surface.Further increasing the t to 32μm coarsens the D_(α-Fe) near the free surface to 15.2 nm and aggravates the D_(α-Fe) ramp along the cross section.After annealing,the ribbon with t=15μm has relatively largeα-Fe grains with D_(α-Fe)>30 nm,while the thicker ribbons possessing the pre-existing nanograins form a finer nanostructure with D_(α-Fe)<16 nm.The structural uniformity of the ribbon with t=23μm is better than that of the ribbon with t=32μm.The annealed ribbons with t=23 and 32μm possess superior soft magnetic properties to the ribbon with t=15μm.The ribbon with t=23μm exhibits a high saturation magnetic flux density of 1.68 T,low coercivity of 9.6 A/m,and high effective permeability at 1 kHz of 15,000.The ribbon with t=32μm has a slightly larger coercivity due to the lower structural uniformity.The formation mechanism of the fine nanostructure for the ribbons with suitable t has been discussed in terms of the competitive growth effect among the pre-existingα-Fe nanograins.展开更多
基金Project (No. 2004QN018) supported by the Health Bureau of Zhejiang Province, China
文摘Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of this study was to find an optimal time point for cell transplantation. Methods: MSCs were isolated and cultured from Sprague-Dawley (SD) rats. MI model was set up in SD rats by permanent ligation of left anterior descending coronary artery. MSCs were directly injected into the infarct border zone at 1 h, 1 week and 2 weeks after MI, respectively. Sham-operated and MI control groups received equal volume of phosphate buffered saline (PBS). At 4 weeks after MI, cardiac function was assessed by echocardiography; vessel density was analyzed on hematoxylin-eosin stained slides by light microscopy; the apoptosis of cardiomyocytes was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay; the expressions of proteins were analyzed by Western blot. Results: MSC transplantation improved cardiac function, reduced the apoptosis of cardiomyocytes and increased vessel density. These benefits were more obvious in 1-week group than in 1-h and 2-week groups. There are more obvious in-creases in the ratio of bcl-2/bax and the expression of vascular endothelial growth factor (VEGF) and more obvious decreases in the expression of cleaved-caspase-3 in 1-week group than those in other two groups. Conclusion: MSC transplantation was beneficial for the recovery of cardiac function. MSC transplantation at 1 week post-MI exerted the best effects on increases of cardiac function, anti-apoptosis and angiogenesis.
基金This work was mainly supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0300501, 2017YFB0t)03t)02), and the National Natural Science Foundation of China (Grant Nos. 51601206, 51771159). An- dJng Wang and Chain-tsuan Liu would like to acknowledge lhe support by General Research Fund of Hong Kong under the grant number of City 102013.
文摘Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 x 10^3, high fracture strength of 4.2 GPa and good plastic strAln of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871039,51771039 and 51571047)。
文摘The effects of ribbon thickness(t)on the structure and magnetic properties of a Fe_(82.3)B_(13)Cu_(1.7)Nb_(3) alloy in melt-spun and annealed states have been investigated.Increasing the t from 15 to 23μm changes the structure of the melt-spun ribbons from a single amorphous phase to a composite with denseα-Fe nanograins embedded in the amorphous matrix.The grain size(D_(α-Fe))of theα-Fe near the free surface of the ribbon is about 6.7 nm,and it gradually decreases along the cross section toward the wheel-contacted surface.Further increasing the t to 32μm coarsens the D_(α-Fe) near the free surface to 15.2 nm and aggravates the D_(α-Fe) ramp along the cross section.After annealing,the ribbon with t=15μm has relatively largeα-Fe grains with D_(α-Fe)>30 nm,while the thicker ribbons possessing the pre-existing nanograins form a finer nanostructure with D_(α-Fe)<16 nm.The structural uniformity of the ribbon with t=23μm is better than that of the ribbon with t=32μm.The annealed ribbons with t=23 and 32μm possess superior soft magnetic properties to the ribbon with t=15μm.The ribbon with t=23μm exhibits a high saturation magnetic flux density of 1.68 T,low coercivity of 9.6 A/m,and high effective permeability at 1 kHz of 15,000.The ribbon with t=32μm has a slightly larger coercivity due to the lower structural uniformity.The formation mechanism of the fine nanostructure for the ribbons with suitable t has been discussed in terms of the competitive growth effect among the pre-existingα-Fe nanograins.