In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression ra...In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.展开更多
Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder.It remains unknown whether electrical stimulation can facilitate sacral ner...Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder.It remains unknown whether electrical stimulation can facilitate sacral nerve regeneration in addition to modulate bladder function.The objective of this study was to utilise electrical stimulation in sacra nerve crush injury with newly constructed electroconductive scaffold and explore the role of macrophages in electrical stimulation with crushed nerves.As a result,we generated a polypyrrole-coated polycaprolactone/silk fibroin scaffold through which we applied electrical stimulation.The electrical stimulation boosted nerve regeneration and polarised the macrophages towards the M2 phenotype.An in vitro test using bone marrow derived macrophages revealed that the pro-regenerative polarisation of M2 were significantly enhanced by electrical stimulation.Bioinformatics analysis showed that the expression of signal transducer and activator of transcriptions(STATs)was differentially regulated in a way that promoted M2-related genes expression.Our work indicated the feasibility of electricals stimulation used for sacral nerve regeneration and provided a firm demonstration of a pivotal role which macrophages played in electrical stimulation.展开更多
基金supported by General Program of National Natural Science Foundation of China,No. 30400465,30571903Open Project from Medical Neurobiology of State Key Laboratory (09-08) of Fudan University
文摘In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.
基金supported by Capital’s Funds for Health Improvement and Research(No.CFH2022-2-5022).
文摘Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder.It remains unknown whether electrical stimulation can facilitate sacral nerve regeneration in addition to modulate bladder function.The objective of this study was to utilise electrical stimulation in sacra nerve crush injury with newly constructed electroconductive scaffold and explore the role of macrophages in electrical stimulation with crushed nerves.As a result,we generated a polypyrrole-coated polycaprolactone/silk fibroin scaffold through which we applied electrical stimulation.The electrical stimulation boosted nerve regeneration and polarised the macrophages towards the M2 phenotype.An in vitro test using bone marrow derived macrophages revealed that the pro-regenerative polarisation of M2 were significantly enhanced by electrical stimulation.Bioinformatics analysis showed that the expression of signal transducer and activator of transcriptions(STATs)was differentially regulated in a way that promoted M2-related genes expression.Our work indicated the feasibility of electricals stimulation used for sacral nerve regeneration and provided a firm demonstration of a pivotal role which macrophages played in electrical stimulation.