Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-t...Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-temperature solution reduction approach is developed to anchor atomically dispersed Pt atoms on carbon nanotubes(Pt-CNTs), which decelerates the diffusion rate of Pt Cl2-6 ion reached onto the carbon nanotubes and lowers the free energy of Pt atoms in the solution to reduce the probability of the Pt aggregation. The obtained Pt-CNTs exhibits a low overpotential of 41 mV@10 mA cm^(-2) for HER in acidic media. The calculation results revealed that the improvement of the electrocatalytic activity is contributed by the interaction between CNTs and Pt atoms, which descreases the the Pt d band cneter referred to the Fermi level and lowers the Gibbs free energy of H*adsorption. This work may provide one easy and convenient strategy for the large-scale use of Pt catalysts in practical applications.展开更多
Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2)...Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2) particles for OER in both alkali and acid environments.The RuO_(2) nanoparticles were treated with a method of pulse laser ablation.Numerous Ru and RuO_(2) clusters were generated at the surface of RuO_(2) nanoparticles after the laser ablation,forming a lychee-shaped morphology.The larger pulse energy RuO_(2) nanoparticles are treated with,the better the OER activity can be.DFT calculations shows that the surface tension induced by the lychee-shaped morphology benefits the OER performance.Our best sample gives an overpotential of 172 mV(at 10 mA cm^(-2))and a Tafel slope of 53.5 mV dec^(-1) in KOH,while an overpotential of 219 mV and a Tafel slope of 44.9 mV dec^(-1) in H_(2)SO_(4),which are of topclass results.This work may inspire a new way to develop high-performance electrocatalysts for OER.展开更多
The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology....The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology.Herein,a novel CoP/CoMoP_(2) heterojunction was synthesized and served as a hydrogen evolution reaction(HER)electrocatalyst.The heterojunction has morphology of nanoporous structure,which is conducive to exposing more active sites and facilitating bubbles transport.The charge distribution is optimized by a strong interface interaction between CoP and CoMoP_(2).The catalyst’s conductivity and the adsorption properties of the intermediates have both been enhanced.CoP/CoMoP_(2) demonstrates excellent HER activity with an overpotential of 93.6 mV at 10 mA∙cm^(-2),which is competitive with the reported performance of analogous electrocatalysts.This work provides insights into the development of innovative phosphide-based heterojunction electrocatalysts.展开更多
基金financial support from the National Natural Science Foundation of China (No. 51572183)the Key Research and Development Plan of Science and Technology of China (No. 2018YFE0202600)。
文摘Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-temperature solution reduction approach is developed to anchor atomically dispersed Pt atoms on carbon nanotubes(Pt-CNTs), which decelerates the diffusion rate of Pt Cl2-6 ion reached onto the carbon nanotubes and lowers the free energy of Pt atoms in the solution to reduce the probability of the Pt aggregation. The obtained Pt-CNTs exhibits a low overpotential of 41 mV@10 mA cm^(-2) for HER in acidic media. The calculation results revealed that the improvement of the electrocatalytic activity is contributed by the interaction between CNTs and Pt atoms, which descreases the the Pt d band cneter referred to the Fermi level and lowers the Gibbs free energy of H*adsorption. This work may provide one easy and convenient strategy for the large-scale use of Pt catalysts in practical applications.
基金the financial support from the Key Research and Development of Ministry of Science and Technology of China(No.2018YFE0202600)National Natural Science Foundation of China(No.11947070,No.51902220,No.51572183)+1 种基金Materials Science&Engineering of Zhejiang Province First-Class Discipline(No.P61021902)Cultivating Program of Taizhou University(No.2018PY050)。
文摘Improving the OER activity of noble metal-based materials is of profound importance to minimize the usage of noble metals and lower the cost.Here,we report considerable improvement on the catalytic activity of RuO_(2) particles for OER in both alkali and acid environments.The RuO_(2) nanoparticles were treated with a method of pulse laser ablation.Numerous Ru and RuO_(2) clusters were generated at the surface of RuO_(2) nanoparticles after the laser ablation,forming a lychee-shaped morphology.The larger pulse energy RuO_(2) nanoparticles are treated with,the better the OER activity can be.DFT calculations shows that the surface tension induced by the lychee-shaped morphology benefits the OER performance.Our best sample gives an overpotential of 172 mV(at 10 mA cm^(-2))and a Tafel slope of 53.5 mV dec^(-1) in KOH,while an overpotential of 219 mV and a Tafel slope of 44.9 mV dec^(-1) in H_(2)SO_(4),which are of topclass results.This work may inspire a new way to develop high-performance electrocatalysts for OER.
基金supported by the National Natural Science Foundation of China(Nos.52271184,52072255)the Natural Science Foundation of Zhejiang Province,China(Nos.LY23E020001,LTY20E020001).
文摘The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology.Herein,a novel CoP/CoMoP_(2) heterojunction was synthesized and served as a hydrogen evolution reaction(HER)electrocatalyst.The heterojunction has morphology of nanoporous structure,which is conducive to exposing more active sites and facilitating bubbles transport.The charge distribution is optimized by a strong interface interaction between CoP and CoMoP_(2).The catalyst’s conductivity and the adsorption properties of the intermediates have both been enhanced.CoP/CoMoP_(2) demonstrates excellent HER activity with an overpotential of 93.6 mV at 10 mA∙cm^(-2),which is competitive with the reported performance of analogous electrocatalysts.This work provides insights into the development of innovative phosphide-based heterojunction electrocatalysts.