Lithium-sulfur(Li-S) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, t...Lithium-sulfur(Li-S) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, the performance of Li-S batteries is still far from theoretical prediction because of the inherent insulation of sulfur, shuttling of soluble polysulfides, swelling of cathode volume and the formation of lithium dendrites. Significant efforts have been made to trap polysulfides via physical strategies using carbon based materials, but the interactions between polysulfides and carbon are so weak that the device performance is limited. Chemical strategies provide the relatively complemented routes for improving the batteries' electrochemical properties by introducing strong interactions between functional groups and lithium polysulfides. Therefore, this review mainly discusses the recent advances in chemical absorption for improving the performance of Li-S batteries by introducing functional groups(oxygen, nitrogen, and boron, etc.) and chemical additives(metal, polymers, etc.) to the carbon structures, and how these foreign guests immobilize the dissolved polysulfides.展开更多
基金supported by the National Natural Science Foundation of China (21303038)Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2016004)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education MinistryOne Hundred Talents Program of Anhui Province
文摘Lithium-sulfur(Li-S) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, the performance of Li-S batteries is still far from theoretical prediction because of the inherent insulation of sulfur, shuttling of soluble polysulfides, swelling of cathode volume and the formation of lithium dendrites. Significant efforts have been made to trap polysulfides via physical strategies using carbon based materials, but the interactions between polysulfides and carbon are so weak that the device performance is limited. Chemical strategies provide the relatively complemented routes for improving the batteries' electrochemical properties by introducing strong interactions between functional groups and lithium polysulfides. Therefore, this review mainly discusses the recent advances in chemical absorption for improving the performance of Li-S batteries by introducing functional groups(oxygen, nitrogen, and boron, etc.) and chemical additives(metal, polymers, etc.) to the carbon structures, and how these foreign guests immobilize the dissolved polysulfides.