期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Model test of negative Poisson’s ratio cable for supporting super-largespan tunnel using excavation compensation method
1
作者 Manchao He aipeng guo +4 位作者 Zhifeng Du Songyuan Liu Chun Zhu Shiding Cao Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1355-1369,共15页
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.... In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。 展开更多
关键词 Super-large-span tunnel Excavation compensation method(ECM) NPR(Negative Poisson’s ratio)anchor cable Model test
下载PDF
Deformation-softening behaviors of high-strength and high-toughness steels used for rock bolts 被引量:2
2
作者 Ding Wang Manchao He +2 位作者 Zhigang Tao aipeng guo Xuchun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1872-1884,共13页
In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on thi... In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications. 展开更多
关键词 Rock bolt High-strength and high-toughness steels Loading rate PRETENSION Deformation-softening Crystal plasticity
下载PDF
Impact and explosion resistance of NPR anchor cable:Field test and numerical simulation 被引量:1
3
作者 Manchao He aipeng guo +2 位作者 Zhigang Meng Yuefeng Pan Zhigang Tao 《Underground Space》 SCIE EI CSCD 2023年第3期76-90,共15页
With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials ... With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure. 展开更多
关键词 Negative Poisson’s ratio(NPR)anchor cable Rock burst Tunnel support Field test Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部