期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Charcoal Nanoparticles as a Delivery System for Doxorubicin and Sorafenib in Treatment of Hepatocellular Carcinoma
1
作者 aisha elgurashi abdulla Toga Khalid Mohamed Gader +3 位作者 Marvit Osman Widdatallah Omer abdullah E. Gouda Samah Mamdouh Mohamed A. Shemis 《Advances in Nanoparticles》 CAS 2024年第3期45-60,共16页
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditio... Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential. 展开更多
关键词 Activated Charcoal Nanoparticles (ACNP) Drug Delivery System Sorafenib and Doxorubicin Hepatocellular Cancer Stem Cells
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部