First-principles calculations have been performed to study the lithium intercalations in MoS2. The formation energies, changes of volumes, electronic structures and charge densities of the lithium intercalations in Mo...First-principles calculations have been performed to study the lithium intercalations in MoS2. The formation energies, changes of volumes, electronic structures and charge densities of the lithium intercalations in MoS2 are presented. Our calculations show that during lithium intercalations in MoS2, the lithium intercalation formation energies per lithium atom are between 2.5 eV to 3.0 eV. The volume expansions of MoS2 due to lithium intercalations are relatively small展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No.10374076by the Natural Science Foundation of Fujian Province under Grant Nos.E0410025 and E032001.
文摘First-principles calculations have been performed to study the lithium intercalations in MoS2. The formation energies, changes of volumes, electronic structures and charge densities of the lithium intercalations in MoS2 are presented. Our calculations show that during lithium intercalations in MoS2, the lithium intercalation formation energies per lithium atom are between 2.5 eV to 3.0 eV. The volume expansions of MoS2 due to lithium intercalations are relatively small