Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer(TNBC)due to its relatively low response to traditional therapeutics.The existing metabolic intervention...Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer(TNBC)due to its relatively low response to traditional therapeutics.The existing metabolic interventions demonstrated unsatisfactory therapeutic outcomes and potential systemic toxicity,resulting from the metabolic instability and limited targeting ability of inhibitors as well as complex tumor microenvironment.To address these limitations,here we developed a robust pyroelectric BaTiO_(3)@Au core–shell nanostructure(BTO@Au)to selectively and persistently block energy generation of tumor cells.Stimulated by near-infrared(NIR)laser,the Au shell could generate heat to activate the BaTiO_(3)core to produce reactive oxygen species(ROS)regardless of the constrained microenvironment,thus prominently inhibits mitochondrial oxidative phosphorylation(OXPHOS)and reduces ATP production to induce TNBC cell apoptosis.The therapeutic effects have been well demonstrated in vitro and in vivo,paving a new way for the development of metabolic interventions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22007063 and 82002063)Shanxi Medical Key Science and Technology Project Plan of China(No.2020XM01)+4 种基金the National University of Singapore Start-up Grant(No.NUHSRO/2020/133/Startup/08)NUS School of Medicine Nanomedicine Translational Research Program(No.NUHSRO/2021/034/TRP/09/Nanomedicine)the Science Research Start-up Fund for Doctor of Shanxi Province(No.XD1809 and XD2011)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0414)Shanxi Province Science Foundation for Youths(No.201901D211316).
文摘Abnormal metabolism has become a potential target for highly malignant and invasive triple-negative breast cancer(TNBC)due to its relatively low response to traditional therapeutics.The existing metabolic interventions demonstrated unsatisfactory therapeutic outcomes and potential systemic toxicity,resulting from the metabolic instability and limited targeting ability of inhibitors as well as complex tumor microenvironment.To address these limitations,here we developed a robust pyroelectric BaTiO_(3)@Au core–shell nanostructure(BTO@Au)to selectively and persistently block energy generation of tumor cells.Stimulated by near-infrared(NIR)laser,the Au shell could generate heat to activate the BaTiO_(3)core to produce reactive oxygen species(ROS)regardless of the constrained microenvironment,thus prominently inhibits mitochondrial oxidative phosphorylation(OXPHOS)and reduces ATP production to induce TNBC cell apoptosis.The therapeutic effects have been well demonstrated in vitro and in vivo,paving a new way for the development of metabolic interventions.