期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Click through Rate Effectiveness Prediction on Mobile Ads Using Extreme Gradient Boosting 被引量:1
1
作者 AlAli Moneera alqahtani maram +4 位作者 AlJuried Azizah Taghareed AlOnizan Dalia Alboqaytah Nida Aslam Irfan Ullah Khan 《Computers, Materials & Continua》 SCIE EI 2021年第2期1681-1696,共16页
Online advertisements have a significant influence over the success or failure of your business.Therefore,it is important to somehow measure the impact of your advertisement before uploading it online,and this is can ... Online advertisements have a significant influence over the success or failure of your business.Therefore,it is important to somehow measure the impact of your advertisement before uploading it online,and this is can be done by calculating the Click Through Rate(CTR).Unfortunately,this method is not eco-friendly,since you have to gather the clicks from users then compute the CTR.This is where CTR prediction come in handy.Advertisement CTR prediction relies on the users’log regarding click information data.Accurate prediction of CTR is a challenging and critical process for e-advertising platforms these days.CTR prediction uses machine learning techniques to determine how much the online advertisement has been clicked by a potential client:The more clicks,the more successful the ad is.In this study we develop a machine learning based click through rate prediction model.The proposed study defines a model that generates accurate results with low computational power consumption.We used four classification techniques,namely K Nearest Neighbor(KNN),Logistic Regression,Random Forest,and Extreme Gradient Boosting(XGBoost).The study was performed on the Click-Through Rate Prediction Competition Dataset.It is a click-through data that is ordered chronologically and was collected over 10 days.Experimental results reveal that XGBoost produced ROC-AUC of 0.76 with reduced number of features. 展开更多
关键词 ADVERTISEMENT XGBoost random forest K-nearest-neighbor logistic regression click through rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部