期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrated silicon ohotonic MEMS 被引量:2
1
作者 Niels Quack alain yuji takabayashi +15 位作者 Hamed Sttari Pieirre Edinger Gaehun Jo Simon JBleker Carlos Errando-Herranz Kristinn BGylfason Frank Niklaus Umar Khan Peter Verheyen Arun Kumar Malik Jun Su Lee Moises Jezzini Padraic Morrissey Cleitus Antony Peter O'Brien Wim Bogaertso 《Microsystems & Nanoengineering》 SCIE CSCD 2023年第2期227-248,共22页
Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications,including very high data rate optical communications,distance sensing for autonomous vehicles,... Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications,including very high data rate optical communications,distance sensing for autonomous vehicles,photonic-accelerated computing,and quantum information processing.The success of silicon photonics has been enabled by the unique combination of performance,high yield,and high-volume capacity that can only be achieved by standardizing manufacturing technology.Today,standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components,including low-loss optical routing,fast modulation,continuous tuning,high-speed germanium photodiodes,and high-effciency optical and electrical interfaces.However,silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption,which are substantial impediments for very large-scale integration in silicon photonics.Microelectromechanical systems(MEMS)technology can enhance silicon photonics with building blocks that are compact,low-loss,broadband,fast and require very low power consumption.Here,we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components,with wafer-level sealing for long-term reliability,flip-chip bonding to redistribution interposers,and fibre-array attachment for high port count optical and electrical interfacing.Our experimental demonstration of fundamental silicon photonic MEMS circuit elements,including power couplers,phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications,neuromorphic computing,sensing,programmable photonics,and quantum computing. 展开更多
关键词 tuning SEALING PHOTONICS
原文传递
Wafer-level hermetically sealed silicon photonic MEMS
2
作者 Gaehun Jo Pierre Edinger +13 位作者 Simon J.Bleiker Xiacxjing Wang alain yuji takabayashi Hamed Sattari Niels Quack Moises Jezzini Jun Su Lee Peter Verheyen Iman Zand Umar Khan Wim Bogaerts Göran Stemme Kristinn B.Gylfason Frank Niklaus 《Photonics Research》 SCIE EI CAS CSCD 2022年第2期I0001-I0008,共8页
The emerging fields of silicon(Si) photonic micro–electromechanical systems(MEMS) and optomechanics enable a wide range of novel high-performance photonic devices with ultra-low power consumption, such as integrated ... The emerging fields of silicon(Si) photonic micro–electromechanical systems(MEMS) and optomechanics enable a wide range of novel high-performance photonic devices with ultra-low power consumption, such as integrated optical MEMS phase shifters, tunable couplers, switches, and optomechanical resonators. In contrast to conventional SiO;-clad Si photonics, photonic MEMS and optomechanics have suspended and movable parts that need to be protected from environmental influence and contamination during operation. Wafer-level hermetic sealing can be a cost-efficient solution, but Si photonic MEMS that are hermetically sealed inside cavities with optical and electrical feedthroughs have not been demonstrated to date, to our knowledge. Here, we demonstrate wafer-level vacuum sealing of Si photonic MEMS inside cavities with ultra-thin caps featuring optical and electrical feedthroughs that connect the photonic MEMS on the inside to optical grating couplers and electrical bond pads on the outside. We used Si photonic MEMS devices built on foundry wafers from the iSiPP50G Si photonics platform of IMEC, Belgium. Vacuum confinement inside the sealed cavities was confirmed by an observed increase of the cutoff frequency of the electro-mechanical response of the encapsulated photonic MEMS phase shifters, due to reduction of air damping. The sealing caps are extremely thin, have a small footprint, and are compatible with subsequent flip-chip bonding onto interposers or printed circuit boards. Thus, our approach for sealing of integrated Si photonic MEMS clears a significant hurdle for their application in high-performance Si photonic circuits. 展开更多
关键词 sealed SEALING BONDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部