Per-and polyfluoroalkyl substances(PFAS)are persistent organic pollutants of concern be-cause of their ubiquitous presence in surface and ground water;analytical methods that can be used for rapid comprehensive exposu...Per-and polyfluoroalkyl substances(PFAS)are persistent organic pollutants of concern be-cause of their ubiquitous presence in surface and ground water;analytical methods that can be used for rapid comprehensive exposure assessment and fingerprinting of PFAS are needed.Following the fires at the Intercontinental Terminals Company(ITC)in Deer Park,TX in 2019,large quantities of PFAS-containing firefighting foams were deployed.The release of these substances into the Houston Ship Channel/Galveston Bay(HSC/GB)prompted con-cerns over the extent and level of PFAS contamination.A targeted liquid chromatography-tandem mass spectrometry(LC-MS/MS)-based study of temporal and spatial patterns of PFAS associated with this incident revealed presence of 7 species;their levels gradually de-creased over a 6-month period.Because the targeted LC-MS/MS analysis was focused on about 30 PFAS molecules,it may have missed other PFAS compounds present in firefighting foams.Therefore,we utilized untargeted LC-ion mobility spectrometry-mass spectrome-try(LC-IMS-MS)-based analytical approach for a more comprehensive characterization of PFAS in these water samples.We analyzed 31 samples from 9 sites in the HSC/GB that were collected over 5 months after the incident.Our data showed that additional 19 PFAS were detected in surface water of HSC/GB,most of them decreased gradually after the incident.PFAS features detected by LC-MS/MS correlated well in abundance with LC-IMS-MS data;however,LC-IMS-MS identified a number of additional PFAS,many known to be compo-nents of firefighting foams.These findings therefore illustrate that untargeted LC-IMS-MS improved our understanding of PFAS presence in complex environmental samples.展开更多
基金funded,in part,by grants P42 ES027704 and P30ES029067 from the National Institute of Environmental Health Sciencessupported,in part,by a training grant T32 ES026568 from the National Institute of Environmental Health Sciences
文摘Per-and polyfluoroalkyl substances(PFAS)are persistent organic pollutants of concern be-cause of their ubiquitous presence in surface and ground water;analytical methods that can be used for rapid comprehensive exposure assessment and fingerprinting of PFAS are needed.Following the fires at the Intercontinental Terminals Company(ITC)in Deer Park,TX in 2019,large quantities of PFAS-containing firefighting foams were deployed.The release of these substances into the Houston Ship Channel/Galveston Bay(HSC/GB)prompted con-cerns over the extent and level of PFAS contamination.A targeted liquid chromatography-tandem mass spectrometry(LC-MS/MS)-based study of temporal and spatial patterns of PFAS associated with this incident revealed presence of 7 species;their levels gradually de-creased over a 6-month period.Because the targeted LC-MS/MS analysis was focused on about 30 PFAS molecules,it may have missed other PFAS compounds present in firefighting foams.Therefore,we utilized untargeted LC-ion mobility spectrometry-mass spectrome-try(LC-IMS-MS)-based analytical approach for a more comprehensive characterization of PFAS in these water samples.We analyzed 31 samples from 9 sites in the HSC/GB that were collected over 5 months after the incident.Our data showed that additional 19 PFAS were detected in surface water of HSC/GB,most of them decreased gradually after the incident.PFAS features detected by LC-MS/MS correlated well in abundance with LC-IMS-MS data;however,LC-IMS-MS identified a number of additional PFAS,many known to be compo-nents of firefighting foams.These findings therefore illustrate that untargeted LC-IMS-MS improved our understanding of PFAS presence in complex environmental samples.