Inflammatory diseases such as inflammatory bowel disease(IBD) require recurrent invasive tests, including blood tests, radiology, and endoscopic evaluation both to diagnose and assess disease activity, and to determin...Inflammatory diseases such as inflammatory bowel disease(IBD) require recurrent invasive tests, including blood tests, radiology, and endoscopic evaluation both to diagnose and assess disease activity, and to determine optimal therapeutic strategies. Simple ‘bedside’ biomarkers could be used in all phases of patient management to avoid unnecessary investigation and guide further management. The focal adhesion complex(FAC) has been implicated in the pathogenesis of multiple inflammatory diseases, including IBD, rheumatoid arthritis, and multiple sclerosis. Utilizing omics technologies has proven to be an efficient approach to identify biomarkers from within the FAC in the field of cancer medicine. Predictive biomarkers are paving the way for the success of precision medicine for cancer patients, but inflammatory diseases have lagged behind in this respect. This review explores the current status of biomarker prediction for inflammatory diseases from within the FAC using omics technologies and highlights the benefits of future potential biomarker identification approaches.展开更多
基金supported by a Clinical Training Fellowship to JB from the Wellcome Trust, UK and by a fellowship in computational biology to TK at the Earlham Institute, in partnership with the Institute of Food Research, UK, and strategically supported by the Biotechnological and Biosciences Research Council, UK (Grant No. BB/J004529/1)
文摘Inflammatory diseases such as inflammatory bowel disease(IBD) require recurrent invasive tests, including blood tests, radiology, and endoscopic evaluation both to diagnose and assess disease activity, and to determine optimal therapeutic strategies. Simple ‘bedside’ biomarkers could be used in all phases of patient management to avoid unnecessary investigation and guide further management. The focal adhesion complex(FAC) has been implicated in the pathogenesis of multiple inflammatory diseases, including IBD, rheumatoid arthritis, and multiple sclerosis. Utilizing omics technologies has proven to be an efficient approach to identify biomarkers from within the FAC in the field of cancer medicine. Predictive biomarkers are paving the way for the success of precision medicine for cancer patients, but inflammatory diseases have lagged behind in this respect. This review explores the current status of biomarker prediction for inflammatory diseases from within the FAC using omics technologies and highlights the benefits of future potential biomarker identification approaches.