We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the F...We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.展开更多
The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edg...The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.展开更多
This paper is concerned with the representation problem of a coupled operator in a product space.A necessary and sufficient condition is given for a class of operators with closed range to have a one-sided coupled ope...This paper is concerned with the representation problem of a coupled operator in a product space.A necessary and sufficient condition is given for a class of operators with closed range to have a one-sided coupled operator matrix representation.The applications of this result in a delay equation and in a diffusion-transport system with dynamical boundary conditions are further presented.展开更多
Symplectic self-adjointness of infinite dimensional Hamiltonian operators is studied, the necessary and sufficient conditions are given. Using the relatively bounded perturbation, the sufficient conditions about sympl...Symplectic self-adjointness of infinite dimensional Hamiltonian operators is studied, the necessary and sufficient conditions are given. Using the relatively bounded perturbation, the sufficient conditions about symplectic self-adjointness are shown.展开更多
Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that t...Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that the main results in the previously published papers are corollaries of the new theorems. Most of all we want to stress the method of proof. It is based on the connections between Pauli operator matrices and nonnegative Hamiltonian matrices.展开更多
In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained...In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization.展开更多
In this paper, the authors investigate the spectral inclusion properties of the quadratic numerical range for unbounded Hamiltonian operators. Moreover, some examples are presented to illustrate the main results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11561048 and 11761029)the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2019MS01019 and 2020ZD01)。
文摘We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.
基金supported by the National Natural Science Foundation of China(Grant No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)+1 种基金the Natural Science Foundation of Inner Mongolia(Grant No. 20080404MS0104)the Research Foundation for Talented Scholars of Inner Mongolia University(Grant No. 207066)
文摘The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.
基金Supported by the NNSF of China(Grant Nos.11961052,11761029)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2317)the NSF of Inner Mongolia(Grant Nos.2021MS01006,2020ZD01)。
文摘This paper is concerned with the representation problem of a coupled operator in a product space.A necessary and sufficient condition is given for a class of operators with closed range to have a one-sided coupled operator matrix representation.The applications of this result in a delay equation and in a diffusion-transport system with dynamical boundary conditions are further presented.
基金Supported by NNSF of China(Grant Nos.11761029 and 11561048)NSF of Inner Mongolia(Grant No.2015MS0116)Natural Science Foundation of Hetao College(Grant No.HYZY201702)
文摘Symplectic self-adjointness of infinite dimensional Hamiltonian operators is studied, the necessary and sufficient conditions are given. Using the relatively bounded perturbation, the sufficient conditions about symplectic self-adjointness are shown.
基金Supported by Natural Science Foundation of China(Grant Nos.11361034,11371185,11101200)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111501110001)+1 种基金Major Subject of Natural Science Foundation of Inner Mongolia of China(Grant No.2013ZD01)Natural Science Foundation of Inner Mongolia of China(Grant No.2012MS0105)
文摘Some new characterizations of nonnegative Hamiltonian operator matrices are given. Several necessary and sufficient conditions for an unbounded nonnegative Hamiltonian operator to be invertible are obtained, so that the main results in the previously published papers are corollaries of the new theorems. Most of all we want to stress the method of proof. It is based on the connections between Pauli operator matrices and nonnegative Hamiltonian matrices.
基金Supported by NSFC(Grant Nos.11101200,11371185,2013ZD01)
文摘In this paper, the adjoint of a densely defined block operator matrix L=[A B C D] in a Hilbert space X ×X is studied and the sufficient conditions under which the equality L*=[A* B* C* D*] holds are obtained through applying Frobenius-Schur factorization.
基金supported by the Natural Science Foundation of China(Nos.11461049,11371185)the Major Program of the National Natural Science Foundation of Inner Mongolia(No.2013ZD01)the National Science Foundation for Fostering Distinguished Young Scholars of Inner Mongolia(No.2013JQ01)
文摘In this paper, the authors investigate the spectral inclusion properties of the quadratic numerical range for unbounded Hamiltonian operators. Moreover, some examples are presented to illustrate the main results.