Biodegradation of lower chlorinated benzenes(tri-, di-and monochlorobenzene) was assessed at a coastal aquifer contaminated with multiple chlorinated aromatic hydrocarbons. Field-derived microcosms, established with g...Biodegradation of lower chlorinated benzenes(tri-, di-and monochlorobenzene) was assessed at a coastal aquifer contaminated with multiple chlorinated aromatic hydrocarbons. Field-derived microcosms, established with groundwater from the source zone and amended with a mixture of lower chlorinated benzenes, evidenced biodegradation of monochlorobenzene(MCB) and 1,4-dichlorobenzene(1,4-DCB) in aerobic microcosms,whereas the addition of lactate in anaerobic microcosms did not enhance anaerobic reductive dechlorination. Aerobic microcosms established with groundwater from the plume consumed several doses of MCB and concomitantly degraded the three isomers of dichlorobenzene with no observable inhibitory effect. In the light of these results, we assessed the applicability of compound stable isotope analysis to monitor a potential aerobic remediation treatment of MCB and 1,4-DCB in this site. The carbon isotopic fractionation factors(ε) obtained from field-derived microcosms were-0.7‰ ± 0.1 ‰ and-1.0‰ ± 0.2 ‰ for MCB and1,4-DCB, respectively. For 1,4-DCB, the carbon isotope fractionation during aerobic biodegradation was reported for the first time. The weak carbon isotope fractionation values for the aerobic pathway would only allow tracing of in situ degradation in aquifer parts with high extent of biodegradation. However, based on the carbon isotope effects measured in this and previous studies, relatively high carbon isotope shifts(i.e., Δδ13C > 4.0 ‰) of MCB or 1,4-DCB in contaminated groundwater would suggest that their biodegradation is controlled by anaerobic reductive dechlorination.展开更多
基金supported by the Catalan Water Agency (No. CTN1900901)supported by the projects CGL2017–82331-R (Spanish Ministry of Economy and Competitiveness)2017SGR 1733 (Catalan Government)。
文摘Biodegradation of lower chlorinated benzenes(tri-, di-and monochlorobenzene) was assessed at a coastal aquifer contaminated with multiple chlorinated aromatic hydrocarbons. Field-derived microcosms, established with groundwater from the source zone and amended with a mixture of lower chlorinated benzenes, evidenced biodegradation of monochlorobenzene(MCB) and 1,4-dichlorobenzene(1,4-DCB) in aerobic microcosms,whereas the addition of lactate in anaerobic microcosms did not enhance anaerobic reductive dechlorination. Aerobic microcosms established with groundwater from the plume consumed several doses of MCB and concomitantly degraded the three isomers of dichlorobenzene with no observable inhibitory effect. In the light of these results, we assessed the applicability of compound stable isotope analysis to monitor a potential aerobic remediation treatment of MCB and 1,4-DCB in this site. The carbon isotopic fractionation factors(ε) obtained from field-derived microcosms were-0.7‰ ± 0.1 ‰ and-1.0‰ ± 0.2 ‰ for MCB and1,4-DCB, respectively. For 1,4-DCB, the carbon isotope fractionation during aerobic biodegradation was reported for the first time. The weak carbon isotope fractionation values for the aerobic pathway would only allow tracing of in situ degradation in aquifer parts with high extent of biodegradation. However, based on the carbon isotope effects measured in this and previous studies, relatively high carbon isotope shifts(i.e., Δδ13C > 4.0 ‰) of MCB or 1,4-DCB in contaminated groundwater would suggest that their biodegradation is controlled by anaerobic reductive dechlorination.