Mussels close their shell as a protective strategy and the quantification of this behavioral marker may represent an alarm signal when they are exposed to environmental stressors.In the present study,we investigated t...Mussels close their shell as a protective strategy and the quantification of this behavioral marker may represent an alarm signal when they are exposed to environmental stressors.In the present study,we investigated the ability of the Mediterranean mussel Mytilus galloprovincialis to recover and then the resilience or inertia of valve activity after a pulsing exposition to diverse levels of salinity(5,10,20,and 35 PSU as reference value).The trial simulated an event of drastic and sudden reduction of seawater salinity thus mimicking an event of flash flood from intense rain.Valve gaping and movements were measured in continuous cycle for 10 days using a customized magnetoelectric device which uses Hall sensors.Results showed that under normal conditions of salinity(35 PSU),the general pattern of valve movements was a continuously open state with sporadic spikes indicating a closing motion.At salinity of 5,PSU mussels reacted by closing their valves,leading to a 77%mortality on the 4th day.At salinity of 10,PSU animals were observed with closed valves for the entire duration of the exposure and no mortality occurred,they showed a significant reduction in the valve activity once the reference value of salinity was reestablished.In contrast,salinity of 20 PSU did not trigger a significant behavioral response.Interestingly,there no define rhythms of valve movements were recorded during salinity challenges.展开更多
基金This study is part of the project“Effects of climate environmental shifts on species,communities and ecosystems,”funded by the Fondazione di Sardegna(2018).
文摘Mussels close their shell as a protective strategy and the quantification of this behavioral marker may represent an alarm signal when they are exposed to environmental stressors.In the present study,we investigated the ability of the Mediterranean mussel Mytilus galloprovincialis to recover and then the resilience or inertia of valve activity after a pulsing exposition to diverse levels of salinity(5,10,20,and 35 PSU as reference value).The trial simulated an event of drastic and sudden reduction of seawater salinity thus mimicking an event of flash flood from intense rain.Valve gaping and movements were measured in continuous cycle for 10 days using a customized magnetoelectric device which uses Hall sensors.Results showed that under normal conditions of salinity(35 PSU),the general pattern of valve movements was a continuously open state with sporadic spikes indicating a closing motion.At salinity of 5,PSU mussels reacted by closing their valves,leading to a 77%mortality on the 4th day.At salinity of 10,PSU animals were observed with closed valves for the entire duration of the exposure and no mortality occurred,they showed a significant reduction in the valve activity once the reference value of salinity was reestablished.In contrast,salinity of 20 PSU did not trigger a significant behavioral response.Interestingly,there no define rhythms of valve movements were recorded during salinity challenges.