Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the ...Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the daily activities of an anatomic pathology laboratory. Daily eight-hour measurements deriving from Radiello® passive diffusive samplers (PDS), NEMo XT continuous optical sensor (COS), and multi-gas 1512 photoacoustic monitor (MPM) were simultaneously compared over a period of 14 working days. Given the different daily distributions of the measurements performed by the three devices, all measurements were time-aligned for comparison purposes. The 95% limit of agreement (LOA) method was applied to estimate the degree of concordance of each device with respect to the others. Formaldehyde arithmetic mean measured using PDS was 32.6 ± 10.4 ppb (range: 19.8 - 62.7). The simultaneous measures performed by COS and MPM were respectively 42.4 ± 44.8 ppb (range: 7.0 - 175.0) and 189.0 ± 163.7 ppb (range: 40.0 - 2895.4). The MPM geometric mean (171.3 ppb) was approximately five times higher than those derived from COS (32.3 ppb) and PDS (31.4 ppb). The results of the LOA method applied to log-transformed FA data showed the same systematic discrepancies between MPM and the other two devices. A good agreement between PDS and COS could lead to a tailored approach according to the individual specificity of these techniques. This tool may be useful for accurately assessing the risk of FA exposure among healthcare workers. However, the limited specificity of the MPM does not support its use as a monitoring method for FA in the workplace.展开更多
文摘Environmental monitoring of airborne formaldehyde (FA) using sensitive methodologies is fundamental to prevent health risks. The objective of this study was to compare three different FA monitoring methods during the daily activities of an anatomic pathology laboratory. Daily eight-hour measurements deriving from Radiello® passive diffusive samplers (PDS), NEMo XT continuous optical sensor (COS), and multi-gas 1512 photoacoustic monitor (MPM) were simultaneously compared over a period of 14 working days. Given the different daily distributions of the measurements performed by the three devices, all measurements were time-aligned for comparison purposes. The 95% limit of agreement (LOA) method was applied to estimate the degree of concordance of each device with respect to the others. Formaldehyde arithmetic mean measured using PDS was 32.6 ± 10.4 ppb (range: 19.8 - 62.7). The simultaneous measures performed by COS and MPM were respectively 42.4 ± 44.8 ppb (range: 7.0 - 175.0) and 189.0 ± 163.7 ppb (range: 40.0 - 2895.4). The MPM geometric mean (171.3 ppb) was approximately five times higher than those derived from COS (32.3 ppb) and PDS (31.4 ppb). The results of the LOA method applied to log-transformed FA data showed the same systematic discrepancies between MPM and the other two devices. A good agreement between PDS and COS could lead to a tailored approach according to the individual specificity of these techniques. This tool may be useful for accurately assessing the risk of FA exposure among healthcare workers. However, the limited specificity of the MPM does not support its use as a monitoring method for FA in the workplace.