Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to ...Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to overcome some of these limits has been explored coupling Au with Cu, which can be suitable for undergoing the electron-switch in the initial step of the cyclohexane oxidation. Hence, a bimetallic 2 wt% Au Cu/Al_(2)O_(3) catalyst was tested in the oxidation of cyclohexane, working at mild conditions of 120 ℃ and 4 bar of O_(2). The combination of the catalyst with a very small amount of benzaldehyde used as cheaper and non-toxic radical initiator allowed to obtain a very high productivity of cyclohexanol and cyclohexanone(45 mmol*m L/mgmet*h) with a selectivity of 94%. Moreover, comparing the catalysed reaction with the non-catalysed one, the role of the catalyst has been disclosed.展开更多
Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones ...Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones by sol immobilization using polyvinyl alcohol(PVA) as protecting agent and NaBH4 as reducing agent,using carbon nanofibers with high graphitization degree(HHT) as the desired support.The synthesized catalysts were characterized by means of Transmission Electron Microscopy(TEM) and inductively coupled plasma optical emission spectroscopy(ICP-OES).TEM shows that the average particle size of the Pd-Rh nanoparticles is the range of 3-4 nm,with the presence of few large agglomerated nanoparticles.For bimetallic catalysts,EDX-STEM analysis of individual nanoparticles demonstrated the presence of random-alloyed nanoparticles even in all cases Rh content is lower than the nominal one(calculated Pd:Rh molar ratio:90-10,69-31,49-51,40-60).The catalytic performance of the Pd-Rh catalysts was evaluated in the liquid phase dehydrogenation of formic acid to H2.It was found that Pd-Rh molar ratio strongly influences the catalytic performance.Pd-rich catalysts were more active than Rh-rich ones,with the highest activity observed for Pd90:Rh10(1792 h^(-1)),whereas Pd69:Rh31(921 h^(-1)) resulted the most stable during recycling tests.Finally,Pd90:Rh10 was chosen as a representative sample for the liquid-phase hydrogenation of muconic acid using formic acid as hydrogen donor,showing good yield to adipic acid.展开更多
Au-Ir and Au-Ru on TiOz catalysts prepared by sequential deposition-precipitation technique were compared with the corresponding monometallics in the hydrogenation of levulinic acid to y-valero]actone. Interestingly t...Au-Ir and Au-Ru on TiOz catalysts prepared by sequential deposition-precipitation technique were compared with the corresponding monometallics in the hydrogenation of levulinic acid to y-valero]actone. Interestingly the addition of Ao to Ir/TiO2 showed a detrimental effect on the activity of Ir monometallic catalyst whereas a positive synergistic effect was shown in the case of Ru. Both catalysts were reduced under H2 to increase the M0-Au0 interaction, From previous DFT calculations and catalytic test, we addressed the lower activity of Au-lr/TiO2 than that of Ir/TiO2 to the interference of Au into the redox mechanism of lr atoms.展开更多
基金The Authors gratefully acknowledge the supportof bilateral project CNR-HAS(MTA)SAC.AD002.037.
文摘Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to overcome some of these limits has been explored coupling Au with Cu, which can be suitable for undergoing the electron-switch in the initial step of the cyclohexane oxidation. Hence, a bimetallic 2 wt% Au Cu/Al_(2)O_(3) catalyst was tested in the oxidation of cyclohexane, working at mild conditions of 120 ℃ and 4 bar of O_(2). The combination of the catalyst with a very small amount of benzaldehyde used as cheaper and non-toxic radical initiator allowed to obtain a very high productivity of cyclohexanol and cyclohexanone(45 mmol*m L/mgmet*h) with a selectivity of 94%. Moreover, comparing the catalysed reaction with the non-catalysed one, the role of the catalyst has been disclosed.
文摘Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones by sol immobilization using polyvinyl alcohol(PVA) as protecting agent and NaBH4 as reducing agent,using carbon nanofibers with high graphitization degree(HHT) as the desired support.The synthesized catalysts were characterized by means of Transmission Electron Microscopy(TEM) and inductively coupled plasma optical emission spectroscopy(ICP-OES).TEM shows that the average particle size of the Pd-Rh nanoparticles is the range of 3-4 nm,with the presence of few large agglomerated nanoparticles.For bimetallic catalysts,EDX-STEM analysis of individual nanoparticles demonstrated the presence of random-alloyed nanoparticles even in all cases Rh content is lower than the nominal one(calculated Pd:Rh molar ratio:90-10,69-31,49-51,40-60).The catalytic performance of the Pd-Rh catalysts was evaluated in the liquid phase dehydrogenation of formic acid to H2.It was found that Pd-Rh molar ratio strongly influences the catalytic performance.Pd-rich catalysts were more active than Rh-rich ones,with the highest activity observed for Pd90:Rh10(1792 h^(-1)),whereas Pd69:Rh31(921 h^(-1)) resulted the most stable during recycling tests.Finally,Pd90:Rh10 was chosen as a representative sample for the liquid-phase hydrogenation of muconic acid using formic acid as hydrogen donor,showing good yield to adipic acid.
基金financial support granted by project UNAM-PAPIIT IN105416
文摘Au-Ir and Au-Ru on TiOz catalysts prepared by sequential deposition-precipitation technique were compared with the corresponding monometallics in the hydrogenation of levulinic acid to y-valero]actone. Interestingly the addition of Ao to Ir/TiO2 showed a detrimental effect on the activity of Ir monometallic catalyst whereas a positive synergistic effect was shown in the case of Ru. Both catalysts were reduced under H2 to increase the M0-Au0 interaction, From previous DFT calculations and catalytic test, we addressed the lower activity of Au-lr/TiO2 than that of Ir/TiO2 to the interference of Au into the redox mechanism of lr atoms.