The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber fo...The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber for RTP is simulated by a radiative-closed thermal system including the influence of quartz window as a spectral filter of lamp emission and a source of emitted thermal radiation. Energy equations for thermal fluxes involved in the heat input and output from the working wafer and quartz window are solved in spectral approximation. The transfer characteristics that are defined by the temperature dependencies of the silicon wafer and the quartz window on the temperature of the heater are accounted. It is shown that temperature bistability in the silicon wafer initiates an induced bistability into the quartz window that does not reveal bistable behavior because of the linear temperature dependence of its total optical characteristics. A possibility for simulation of the quartz window by spectral restriction of the heater radiation is confirmed. The availability of the weak bistable effect in the mode of zero effective heat exchange coefficient of a non-radiative component of the thermal flux removed from the working wafer has been obtained.展开更多
文摘The effect of a quartz plate (window) on the silicon wafer temperature is studied in the conditions of the combined thermal transfer in a lamp-based chamber for the rapid thermal treatment (RTP) set up. The chamber for RTP is simulated by a radiative-closed thermal system including the influence of quartz window as a spectral filter of lamp emission and a source of emitted thermal radiation. Energy equations for thermal fluxes involved in the heat input and output from the working wafer and quartz window are solved in spectral approximation. The transfer characteristics that are defined by the temperature dependencies of the silicon wafer and the quartz window on the temperature of the heater are accounted. It is shown that temperature bistability in the silicon wafer initiates an induced bistability into the quartz window that does not reveal bistable behavior because of the linear temperature dependence of its total optical characteristics. A possibility for simulation of the quartz window by spectral restriction of the heater radiation is confirmed. The availability of the weak bistable effect in the mode of zero effective heat exchange coefficient of a non-radiative component of the thermal flux removed from the working wafer has been obtained.