Ultrafast fiber sources having short pulses, broad bandwidth, high energy, and low amplitude fluctuations have widespread applications. Stretched-pulse fiber lasers, incorporating segments of normal and anomalous disp...Ultrafast fiber sources having short pulses, broad bandwidth, high energy, and low amplitude fluctuations have widespread applications. Stretched-pulse fiber lasers, incorporating segments of normal and anomalous dispersion fibers, are a preferred means to generate such pulses. We realize a stretched-pulse fiber laser based on a nanotube saturable absorber, with 113 fs pulses, 33.5 nm spectral width and ~0.07% amplitude fluctuation, outperforming current nanotube-based designs.展开更多
基金We acknowledge F.Hennrich for providing SWNTs and funding from a Royal Society Brian Mercer Award for Innovation,King’s College,Cambridge,ERC grant NANOPOTS,and EPSRC grant EP/G030480/1.
文摘Ultrafast fiber sources having short pulses, broad bandwidth, high energy, and low amplitude fluctuations have widespread applications. Stretched-pulse fiber lasers, incorporating segments of normal and anomalous dispersion fibers, are a preferred means to generate such pulses. We realize a stretched-pulse fiber laser based on a nanotube saturable absorber, with 113 fs pulses, 33.5 nm spectral width and ~0.07% amplitude fluctuation, outperforming current nanotube-based designs.