We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation ra...We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable Rv. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 M~ yr-1, the masses from 109 to 4 ~ 1011 Mo, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at 〈 100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known 'downsizing' scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M,/L ratios.展开更多
The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a...The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a sophisticated seven-band photometric system.The resulting data will provide unprecedented data for studying the structure and stellar populations of the Milky Way.To support the CSST development and scientific projects related to its survey data,we generate the first comprehensive Milky Way stellar mock catalogue for the CSST SC photometric system using the TRILEGAL stellar population synthesis tool.The catalogue includes approximately 12.6 billion stars,covering a wide range of stellar parameters,photometry,astrometry,and kinematics,with magnitude reaching down to g=27.5 mag in the AB magnitude system.The catalogue represents our benchmark understanding of the stellar populations in the Milky Way,enabling a direct comparison with the future CSST survey data.Particularly,it sheds light on faint stars hidden from current sky surveys.Our crowding limit analysis based on this catalogue provides compelling evidence for the extension of the CSST Optical Survey(OS)to cover low Galactic latitude regions.The strategic extension of the CSST-OS coverage,combined with this comprehensive mock catalogue,will enable transformative science with the CSST.展开更多
基金Supported by the National Natural Science Foundation of China
文摘We build a sample of 298 spectroscopically-confirmed galaxies at redshift z - 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 p.m luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable Rv. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 M~ yr-1, the masses from 109 to 4 ~ 1011 Mo, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at 〈 100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known 'downsizing' scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M,/L ratios.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2203100,and 2021YFC2203104)the science research grants from the China Manned Space Project(Grant No.CMSCSST-2021-A08)+4 种基金the National Natural Science Foundation of China(Grant No.12003001)the Anhui Project(Grant No.Z010118169)the support of the National Natural Science Foundation of China(Grant No.12203100)the National Natural Science Foundation of China(Grant No.12273077)the support from Padova University through the research project PRD 2021。
文摘The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a sophisticated seven-band photometric system.The resulting data will provide unprecedented data for studying the structure and stellar populations of the Milky Way.To support the CSST development and scientific projects related to its survey data,we generate the first comprehensive Milky Way stellar mock catalogue for the CSST SC photometric system using the TRILEGAL stellar population synthesis tool.The catalogue includes approximately 12.6 billion stars,covering a wide range of stellar parameters,photometry,astrometry,and kinematics,with magnitude reaching down to g=27.5 mag in the AB magnitude system.The catalogue represents our benchmark understanding of the stellar populations in the Milky Way,enabling a direct comparison with the future CSST survey data.Particularly,it sheds light on faint stars hidden from current sky surveys.Our crowding limit analysis based on this catalogue provides compelling evidence for the extension of the CSST Optical Survey(OS)to cover low Galactic latitude regions.The strategic extension of the CSST-OS coverage,combined with this comprehensive mock catalogue,will enable transformative science with the CSST.