The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very sl...The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer. Its removal has been so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50°C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p < 0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p < 0.05) in malic and citric acids and in texture properties between untreated and treated samples were observed.展开更多
We report on the first demonstration of a proof-of-principle optical fiber‘meta-tip’,which integrates a phase-gradient plasmonic metasurface on the fiber tip.For illustration and validation purposes,we present numer...We report on the first demonstration of a proof-of-principle optical fiber‘meta-tip’,which integrates a phase-gradient plasmonic metasurface on the fiber tip.For illustration and validation purposes,we present numerical and experimental results pertaining to various prototypes implementing generalized forms of the Snell’s transmission/reflection laws at near-infrared wavelengths.In particular,we demonstrate several examples of beam steering and coupling with surface waves,in fairly good agreement with theory.Our results constitute a first step toward the integration of unprecedented(metasurface-enabled)light-manipulation capabilities in optical-fiber technology.By further enriching the emergent‘lab-on-fiber’framework,this may pave the way for the widespread diffusion of optical metasurfaces in real-world applications to communications,signal processing,imaging and sensing.展开更多
文摘The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer. Its removal has been so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50°C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p < 0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p < 0.05) in malic and citric acids and in texture properties between untreated and treated samples were observed.
文摘We report on the first demonstration of a proof-of-principle optical fiber‘meta-tip’,which integrates a phase-gradient plasmonic metasurface on the fiber tip.For illustration and validation purposes,we present numerical and experimental results pertaining to various prototypes implementing generalized forms of the Snell’s transmission/reflection laws at near-infrared wavelengths.In particular,we demonstrate several examples of beam steering and coupling with surface waves,in fairly good agreement with theory.Our results constitute a first step toward the integration of unprecedented(metasurface-enabled)light-manipulation capabilities in optical-fiber technology.By further enriching the emergent‘lab-on-fiber’framework,this may pave the way for the widespread diffusion of optical metasurfaces in real-world applications to communications,signal processing,imaging and sensing.