The demand for getters with high sorption efficiency has generated a need for resources to assist in qualification of getter materials for their practical use. This paper discusses innovative steps which should provid...The demand for getters with high sorption efficiency has generated a need for resources to assist in qualification of getter materials for their practical use. This paper discusses innovative steps which should provide a dramatic improvement in the selection and application of getter technologies used in various processes. The first step was to build a natural classification of chemisorbents, from which we obtain a corresponding order of suitability related to known getter products. The classification system suggested by the authors is based on criteria which are directly connected with the sorption behavior of the material. This has lead to the challenge of developing of a computing algorithm for characterization of sorption properties of getter materials and for solving the inverse problem—the problem of designing a chemisorbent based on the requirements of a fully realized application. The employment of the new methodology is demonstrated in the example of the calculations supporting the selection of getter films for MEMS.展开更多
文摘The demand for getters with high sorption efficiency has generated a need for resources to assist in qualification of getter materials for their practical use. This paper discusses innovative steps which should provide a dramatic improvement in the selection and application of getter technologies used in various processes. The first step was to build a natural classification of chemisorbents, from which we obtain a corresponding order of suitability related to known getter products. The classification system suggested by the authors is based on criteria which are directly connected with the sorption behavior of the material. This has lead to the challenge of developing of a computing algorithm for characterization of sorption properties of getter materials and for solving the inverse problem—the problem of designing a chemisorbent based on the requirements of a fully realized application. The employment of the new methodology is demonstrated in the example of the calculations supporting the selection of getter films for MEMS.