期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube photoluminescence probe: Fast relaxation by nucleobase autoionization mechanism
1
作者 Tetyana Ignatova alexander balaeff +3 位作者 Michael Blades Ming Zheng: Peter Stoeckl Slava V. Rotkin 《Nano Research》 SCIE EI CAS CSCD 2016年第2期571-583,共13页
DNA autoionization is a fundamental process wherein ultraviolet (UV)- photoexcited nucleobases dissipate energy by charge transfer to the environment without undergoing chemical damage. Here, single-wall carbon nano... DNA autoionization is a fundamental process wherein ultraviolet (UV)- photoexcited nucleobases dissipate energy by charge transfer to the environment without undergoing chemical damage. Here, single-wall carbon nanotubes (SWNT) are explored as a photoluminescent reporter for the study of the mechanism and rates of DNA autoionization. Two-color photoluminescence spectroscopy allows separate photoexcitation of the DNA and the SWNTs in the UV and visible range, respectively. A strong SWNT photoluminescence quenching is observed when the UV pump is resonant with the DNA absorption, consistent with charge transfer from the excited states of the DNA to the SWNT. Semiempirical calculations of the DNA-SWNT electronic structure, combined with a Green's function theory for charge transfer, show a 20 fs autoionization rate, dominated by hole transfer. Rate-equation analysis of the spectroscopy data confirms that the quenching rate is limited by thermalization of the free charge carriers transferred to the nanotube reservoir. This approach has great potential for monitoring DNA excitation, autoionization, and chemical damage, both in vivo and in vitro. 展开更多
关键词 single-wall nanotube optical spectroscopy two-color spectroscopy DNA autoionization DNA ultraviolet (UV) excitation quantum-mechanical modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部