Monolayer CrSBr is a recently discovered semiconducting spin-3/2 ferromagnet with a Curie temperature of around 146 K.In contrast to many other known 2D magnets,the orthorhombic lattice of CrSBr gives rise to spatial ...Monolayer CrSBr is a recently discovered semiconducting spin-3/2 ferromagnet with a Curie temperature of around 146 K.In contrast to many other known 2D magnets,the orthorhombic lattice of CrSBr gives rise to spatial anisotropy of magnetic excitations within the 2D plane.Triaxial magnetic anisotropy and considerable magnetic dipolar interactions in CrSBr challenge its theoretical description in terms of spin Hamiltonians.Here,we employ a Green’s function formalism combined with first-principles calculations to study the magnetic properties of monolayer CrSBr in different regimes of surrounding dielectric screening.In the free-standing limit,the system is close to an easy-plane magnet,whose long-range ordering is partially suppressed.On the contrary,in the regime of large external screening,monolayer CrSBr behaves like an easy-axis ferromagnet with more stable magnetic ordering.Our findings suggest that anisotropic layered magnets form a potentially promising platform for studying the effects of substrate screening on magnetic ordering in 2D.展开更多
Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena.In this work,we systematically describe collective electronic...Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena.In this work,we systematically describe collective electronic effects in hole-doped InSe monolayers using advanced many-body techniques.To this end,we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material,including a flat band with prominent van Hove singularities in the electronic spectrum,strong electron–phonon coupling,and weakly screened long-ranged Coulomb interactions.We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations.This regime can be achieved at realistic doping levels and high enough temperatures,and can be verified experimentally.We find that the electron–phonon interaction does not play a crucial role in these effects,effectively suppressing the local Coulomb interaction without changing the qualitative physical picture.展开更多
基金The work was supported by European Research Council via Synergy Grant 854843-FASTCORR.
文摘Monolayer CrSBr is a recently discovered semiconducting spin-3/2 ferromagnet with a Curie temperature of around 146 K.In contrast to many other known 2D magnets,the orthorhombic lattice of CrSBr gives rise to spatial anisotropy of magnetic excitations within the 2D plane.Triaxial magnetic anisotropy and considerable magnetic dipolar interactions in CrSBr challenge its theoretical description in terms of spin Hamiltonians.Here,we employ a Green’s function formalism combined with first-principles calculations to study the magnetic properties of monolayer CrSBr in different regimes of surrounding dielectric screening.In the free-standing limit,the system is close to an easy-plane magnet,whose long-range ordering is partially suppressed.On the contrary,in the regime of large external screening,monolayer CrSBr behaves like an easy-axis ferromagnet with more stable magnetic ordering.Our findings suggest that anisotropic layered magnets form a potentially promising platform for studying the effects of substrate screening on magnetic ordering in 2D.
基金The work of E.A.S.was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie grant agreement No.839551-2DMAGICSThe work of M.I.K.,A.N.R.,and A.I.L.was supported by European Research Council via Synergy Grant 854843-FASTCORR+1 种基金V.H.and A.I.L.acknowledge the support by the Cluster of Excellence“Advanced Imaging of Matter”of the Deutsche Forschungsgemeinschaft(DFG)-EXC 2056-Project No.ID390715994E.A.S.,V.H.,and A.I.L.also acknowledge the support by North-German Supercomputing Alliance(HLRN)under the Project No.hhp00042.
文摘Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena.In this work,we systematically describe collective electronic effects in hole-doped InSe monolayers using advanced many-body techniques.To this end,we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material,including a flat band with prominent van Hove singularities in the electronic spectrum,strong electron–phonon coupling,and weakly screened long-ranged Coulomb interactions.We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations.This regime can be achieved at realistic doping levels and high enough temperatures,and can be verified experimentally.We find that the electron–phonon interaction does not play a crucial role in these effects,effectively suppressing the local Coulomb interaction without changing the qualitative physical picture.