Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated ...Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated for the case of selective alkylarene oxidation by molecular oxygen.The proposed catalytic system consists of two widely available components:N-hydroxyphthalimide(NHPI,a homogeneous organocatalyst for free-radical chain reactions)and nanosized TiO_(2)(heterogeneous UV-active photoredox catalyst).The interaction of NHPI with TiO_(2) allows for a shift from UV to visible light photoredox activity and generation of phthalimide-N-oxyl(PINO)radicals that diffuse into the solution where NHPI/PINO-catalyzed free-radical chain reaction can proceed without the additional light input providing a fundamental increase in energy efficiency.The NHPI/TiO_(2) ratio controls the selectivity of oxidation affording preferential formation of hydroperoxide or ketone from alkylarene.展开更多
文摘Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other.In the present work,a new type of mixed het-ero-/homogeneous catalysis was demonstrated for the case of selective alkylarene oxidation by molecular oxygen.The proposed catalytic system consists of two widely available components:N-hydroxyphthalimide(NHPI,a homogeneous organocatalyst for free-radical chain reactions)and nanosized TiO_(2)(heterogeneous UV-active photoredox catalyst).The interaction of NHPI with TiO_(2) allows for a shift from UV to visible light photoredox activity and generation of phthalimide-N-oxyl(PINO)radicals that diffuse into the solution where NHPI/PINO-catalyzed free-radical chain reaction can proceed without the additional light input providing a fundamental increase in energy efficiency.The NHPI/TiO_(2) ratio controls the selectivity of oxidation affording preferential formation of hydroperoxide or ketone from alkylarene.