Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical...Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical points that are not yet fully understood. In this study, field experimental pots together with a stable Hg isotope tracing technique were used to provide direct evidence of the sources and transformations of Hg species in rice plants. Enriched inorganic Hg (IHg) isotope (200Hg(NO3)2) was spiked into paddy soils, and the concentrations of inorganic Hg tracer (I200Hg), MeHg tracer (Me200Hg), and ambient Hg species (IHg and MeHg) were measured in the tissues of rice plants and their corresponding soil samples during the rice growing season. Here, we show that, in addition to the atmosphere, the soil is an important source of IHg to rice grains and was previously largely underestimated. We also show that MeHg is formed in paddy soil via microbial IHg methylation, absorbed through the rice root, translocated from the root to above-ground parts, and finally accumulated in rice grains. Although in vivo methylation of IHg in rice plants is unlikely to occur during the rice growing season, we observed in vivo demethylation of MeHg in the above-ground parts of rice plants, possibly via photolytic demethylation. Promoting in vivo demethylation of MeHg may be an effective approach to mitigate MeHg accumulation in rice grains.展开更多
基金This work was supported by the National Natural Science Foundation of China(41473123,42022024,41931297,41921004)CAS“Light of West China”Program,and the State Key Laboratory of Environmental Geochemistry(SKLEG2019707).
文摘Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical points that are not yet fully understood. In this study, field experimental pots together with a stable Hg isotope tracing technique were used to provide direct evidence of the sources and transformations of Hg species in rice plants. Enriched inorganic Hg (IHg) isotope (200Hg(NO3)2) was spiked into paddy soils, and the concentrations of inorganic Hg tracer (I200Hg), MeHg tracer (Me200Hg), and ambient Hg species (IHg and MeHg) were measured in the tissues of rice plants and their corresponding soil samples during the rice growing season. Here, we show that, in addition to the atmosphere, the soil is an important source of IHg to rice grains and was previously largely underestimated. We also show that MeHg is formed in paddy soil via microbial IHg methylation, absorbed through the rice root, translocated from the root to above-ground parts, and finally accumulated in rice grains. Although in vivo methylation of IHg in rice plants is unlikely to occur during the rice growing season, we observed in vivo demethylation of MeHg in the above-ground parts of rice plants, possibly via photolytic demethylation. Promoting in vivo demethylation of MeHg may be an effective approach to mitigate MeHg accumulation in rice grains.