Gliomas, the most aggressive form of brain cancer, are known for their widespread invasion into the tissue near the tumor lesion. Exponential models, which have been widely used in other types of cancers, cannot be us...Gliomas, the most aggressive form of brain cancer, are known for their widespread invasion into the tissue near the tumor lesion. Exponential models, which have been widely used in other types of cancers, cannot be used for the simulation of tumor growth, due to the diffusive behavior of glioma. Diffusive models that have been proposed in the last two decades seem to better approximate the expansion of gliomas. This paper covers the history of glioma diffusive modelling, starting from the simplified initial model in 90s and describing how this have been enriched to take into account heterogenous brain tissue, anisotropic migration of glioma cells and adjustable proliferation rates. Especially, adjustable proliferation rates are very important for modelling therapy plans and personalising therapy to different patients.展开更多
文摘Gliomas, the most aggressive form of brain cancer, are known for their widespread invasion into the tissue near the tumor lesion. Exponential models, which have been widely used in other types of cancers, cannot be used for the simulation of tumor growth, due to the diffusive behavior of glioma. Diffusive models that have been proposed in the last two decades seem to better approximate the expansion of gliomas. This paper covers the history of glioma diffusive modelling, starting from the simplified initial model in 90s and describing how this have been enriched to take into account heterogenous brain tissue, anisotropic migration of glioma cells and adjustable proliferation rates. Especially, adjustable proliferation rates are very important for modelling therapy plans and personalising therapy to different patients.