Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphol...Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637 °C. The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization. Hydrothermal processes are responsible for the formation of significant zircon overgrowth; high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium(e U) and thorium(e Th) contents of up to 1386 and 7330 ppm, respectively.Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content, suggesting the replacement of Zr by Hf during hydrothermal activity.Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.展开更多
文摘Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637 °C. The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization. Hydrothermal processes are responsible for the formation of significant zircon overgrowth; high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium(e U) and thorium(e Th) contents of up to 1386 and 7330 ppm, respectively.Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content, suggesting the replacement of Zr by Hf during hydrothermal activity.Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.