期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soil substrate as a cascade of capillary barriers for conserving water in a desert environment:lessons learned from arid nature 被引量:1
1
作者 ali al-maktoumi Said Al-ISMAILY +3 位作者 Anvar KACIMOV Hamed Al-BUSAIDI Said Al-SAQRI Mansour Al-HADABI 《Journal of Arid Land》 SCIE CSCD 2014年第6期690-703,共14页
Interaction between soil pedogenesis, subsurface water dynamics, climate, vegetation and human ingenuity in a desert environment has been found to result in a unique ecohydrological system with an essentially three di... Interaction between soil pedogenesis, subsurface water dynamics, climate, vegetation and human ingenuity in a desert environment has been found to result in a unique ecohydrological system with an essentially three dimensional sedimentation structure in the bed of a recharge dam in Oman. A 3-D array of silt blocks sand- wiched by dry sand-filled horizontal and vertical fractures was studied in pot experiments as a model of a natural prototype. Pots are filled with a homogenous sand-silt mixture (control) or artificially structured (smart design, SD) soil substrates. Rhodes grass and ivy (Ipomea, Convolvulaceae) were grown in the pots during the hottest season in Oman. Soil moisture content (SMC) was measured at different depths over a period of 20 days without irrigation. SD preserved the SMC of the root zone for both ivy and grass (SMC of around 25%-30% compared to 〈10% for control, 3 days after the last irrigation). Even after 20 days, SMC was around 18% in the SD and 7% in the control. This, similar to the case of a natural prototype, is attributed to the higher upward capillary movement of water in control pots and intensive evaporation. The capillary barrier of sand sheaths causes discontinuity in moisture mi- gration from the micro-pores in the silt blocks to sand pores. The blocks serve as capillarity-locked water buffers, which are depleted at a slow rate by transpiration rather than evaporation from the soil surface. This creates a unique ecosystem with a dramatic difference in vegetation between SD-pots and control pots. Consequently, the Noy-Meir edaphic factor, conceptualizing the ecological impact of 1-D vertical heterogeneity of desert soils, should be generalized to incorporate 3-D soil heterogeneity patterns. This agro-engineering control of the soil substrate and soil moisture distribution and dynamics (SMDaD) can be widely used by desert farmers as a cheap technique, with significant savings of irrigation water. 展开更多
关键词 soil capillary barrier infiltration soil heterogeneity ECOHYDROLOGY HYDROPEDOLOGY plant root soil moisture content
下载PDF
Hydrological and economic feasibility of mitigating a stressed coastal aquifer using managed aquifer recharge: a case study of Jamma aquifer, Oman
2
作者 Mustafa EL-RAWY ali al-maktoumi +2 位作者 Slim ZEKRI Osman ABDALLA Rashid AL-ABRI 《Journal of Arid Land》 SCIE CSCD 2019年第1期148-159,共12页
This study explored the hydrological and economic feasibility of managed aquifer recharge(MAR) using tertiary treated wastewater(TWW) to mitigate salinity in the coastal aquifer of Jamma, Oman. A steady-state groundwa... This study explored the hydrological and economic feasibility of managed aquifer recharge(MAR) using tertiary treated wastewater(TWW) to mitigate salinity in the coastal aquifer of Jamma, Oman. A steady-state groundwater flow and transport model, using MODFLOW software, was developed and calibrated. Different managerial scenarios were simulated and the results reveal that the Jamma aquifer will be further deteriorated in the next 20 a if it remains unmanaged. The groundwater table will decline further by more than 3 m on average; and the iso-concentration salinity line of 1500 mg/L will advance 2.7 km inland, which will severely affect the farming activities in the area. However, MAR using TWW when integrated with the management of groundwater abstraction(e.g., using modern irrigation systems to reduce the abstraction rate) becomes hydrologically feasible to augment the aquifer storage and control seawater intrusion, and hence improves the farming activities. The results indicate that:(1) injecting TWW in the vicinity of irrigation wells(Scenario A2);(2) investing in smart water meters and online control of pumping from the wells to reduce the abstraction rate by 25%(Scenario B); and(3) a combination of both(Scenario B2) are feasible scenarios with positive net present values. Recharge in upstream areas is found not economically feasible because of the very high investment cost of the installation of pipes to transport the TWW over a distance of 12.5 km. Because of securing funds are challenging, Scenario B would be the best option and the second-best option is Scenario A2. Scenario B2 has the lowest net benefit investment ratio and is very attractive because it entails integrated demand and supply management of groundwater. It is required to reduce pumping and to invest in injecting TWW to improve groundwater quality in the vicinity of irrigation wells and to form a hydrological barrier to control seawater intrusion in the long run. 展开更多
关键词 managed AQUIFER RECHARGE treated WASTEWATER SALINITY line COASTAL AQUIFER Oman
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部