Convection-dispersion of fluids flowing through porous media is an important phenomenon in immiscible and miscible displacement in hydrocarbon reservoirs. Exact calculation of this problem leads to perform more robust...Convection-dispersion of fluids flowing through porous media is an important phenomenon in immiscible and miscible displacement in hydrocarbon reservoirs. Exact calculation of this problem leads to perform more robust reservoir simulation and reliable prediction. There are various techniques that have been proposed to solve convection-dispersion equation. To check the validity of these techniques, the convection-dispersion equation was solved numerically using a series of well known numerical techniques. Such techniques that employed in this study include method of line, explicit, implicit, Crank-Nicolson and Barakat-Clark. Several cases were considered as input, and convection-dispersion equation was solved using the aforementioned techniques. Moreover the error analysis was also carried out based on the comparison of numerical and analytical results. Finally it was observed that method of line and explicit methods are not capable of simulating the convection-dispersion equation for wide range of input parameters. The Barakat-Clark method was also failed to predict accurate results and in some cases it had large deviation from analytical solution. On the other hand, the simulation results of implicit and Crank-Nicolson have more qualitative and quantitative agreement with those obtained by the analytical solutions.展开更多
文摘Convection-dispersion of fluids flowing through porous media is an important phenomenon in immiscible and miscible displacement in hydrocarbon reservoirs. Exact calculation of this problem leads to perform more robust reservoir simulation and reliable prediction. There are various techniques that have been proposed to solve convection-dispersion equation. To check the validity of these techniques, the convection-dispersion equation was solved numerically using a series of well known numerical techniques. Such techniques that employed in this study include method of line, explicit, implicit, Crank-Nicolson and Barakat-Clark. Several cases were considered as input, and convection-dispersion equation was solved using the aforementioned techniques. Moreover the error analysis was also carried out based on the comparison of numerical and analytical results. Finally it was observed that method of line and explicit methods are not capable of simulating the convection-dispersion equation for wide range of input parameters. The Barakat-Clark method was also failed to predict accurate results and in some cases it had large deviation from analytical solution. On the other hand, the simulation results of implicit and Crank-Nicolson have more qualitative and quantitative agreement with those obtained by the analytical solutions.