We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within ...We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within density functional theory (DFT) based on local density Approximation (LDA), and generalized gradient approximation (GGA). We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. Using the approach of Zunger and coworkers, the microscopic origins of band gap bowing have been detailed and explained. Discussions will be given in comparison with results obtained with other available theoretical and experimental results.展开更多
The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functio...The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials CdSe, ZnSe and their alloy in cubic phase. In particular, the lattice constant, bulk modulus, electronic band structures and effective mass. We mainly showed deviation of the lattice parameter and bulk modulus from Vegard’s law of our alloys. We also presented the microscopic origins of the gap bowing using the approach of Zunger et al. The results are compared with other theoretical calculations and experimental data and are in reasonable agreement.展开更多
The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-o...The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-orbital (FP-LMTO) method has been used in conjunction with both the local-density approximation (LDA) and the generalized-gradient approximation (GGA) to investigate the effect of increasing the concentration of aluminum on the structural properties such as the lattice constants and the bulk moduli. Besides, we report the concentration dependence of the electronic band structure, the direct-indirect band gap crossovers and bowing. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained. A reasonable agreement is found in comparing our results with other theoretical calculations.展开更多
文摘We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within density functional theory (DFT) based on local density Approximation (LDA), and generalized gradient approximation (GGA). We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. Using the approach of Zunger and coworkers, the microscopic origins of band gap bowing have been detailed and explained. Discussions will be given in comparison with results obtained with other available theoretical and experimental results.
文摘The present work performs self-consistent ab initio full-potential linear muffin-tin orbital (FP-LMTO) method to study the structural and electronic properties of the ternary ZnxCd1-xSe alloy, based on density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials CdSe, ZnSe and their alloy in cubic phase. In particular, the lattice constant, bulk modulus, electronic band structures and effective mass. We mainly showed deviation of the lattice parameter and bulk modulus from Vegard’s law of our alloys. We also presented the microscopic origins of the gap bowing using the approach of Zunger et al. The results are compared with other theoretical calculations and experimental data and are in reasonable agreement.
文摘The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-orbital (FP-LMTO) method has been used in conjunction with both the local-density approximation (LDA) and the generalized-gradient approximation (GGA) to investigate the effect of increasing the concentration of aluminum on the structural properties such as the lattice constants and the bulk moduli. Besides, we report the concentration dependence of the electronic band structure, the direct-indirect band gap crossovers and bowing. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained. A reasonable agreement is found in comparing our results with other theoretical calculations.