Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral p...Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.展开更多
Dental stem cells(DSCs)are self-renewable cells that can be obtained easily from dental tissues,and are a desirable source of autologous stem cells.The use of DSCs for stem cell transplantation therapeutic approaches ...Dental stem cells(DSCs)are self-renewable cells that can be obtained easily from dental tissues,and are a desirable source of autologous stem cells.The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation,high plasticity,immunomodulatory properties,and multipotential abilities.Using appropriate scaffolds loaded with favorable biomolecules,such as growth factors,and cytokines,can improve the proliferation,differentiation,migration,and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes.An enormous variety of scaffolds have been used for tissue engineering with DSCs.Of these,the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis,cell-matrix interactions,degradation of extracellular matrix,organized matrix formation,and the mineralization abilities of DSCs in both in vitro and in vivo conditions.DSCs represent a promising cell source for tissue engineering,especially for tooth,bone,and neural tissue restoration.The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.展开更多
Yoga is considered a widely-used approach for health conservation and can be adopted as a treatment modality for a plethora of medical conditions,including neurological and psychological disorders.Hence,we reviewed re...Yoga is considered a widely-used approach for health conservation and can be adopted as a treatment modality for a plethora of medical conditions,including neurological and psychological disorders.Hence,we reviewed relevant articles entailing various neurological and psychological disorders and gathered data on how yoga exerts positive impacts on patients with a diverse range of disorders,including its modulatory effects on brain bioelectrical activities,neurotransmitters,and synaptic plasticity.The role of yoga practice as an element of the treatment of several neuropsychological diseases was evaluated based on these findings.展开更多
文摘Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.
文摘Dental stem cells(DSCs)are self-renewable cells that can be obtained easily from dental tissues,and are a desirable source of autologous stem cells.The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation,high plasticity,immunomodulatory properties,and multipotential abilities.Using appropriate scaffolds loaded with favorable biomolecules,such as growth factors,and cytokines,can improve the proliferation,differentiation,migration,and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes.An enormous variety of scaffolds have been used for tissue engineering with DSCs.Of these,the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis,cell-matrix interactions,degradation of extracellular matrix,organized matrix formation,and the mineralization abilities of DSCs in both in vitro and in vivo conditions.DSCs represent a promising cell source for tissue engineering,especially for tooth,bone,and neural tissue restoration.The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
文摘Yoga is considered a widely-used approach for health conservation and can be adopted as a treatment modality for a plethora of medical conditions,including neurological and psychological disorders.Hence,we reviewed relevant articles entailing various neurological and psychological disorders and gathered data on how yoga exerts positive impacts on patients with a diverse range of disorders,including its modulatory effects on brain bioelectrical activities,neurotransmitters,and synaptic plasticity.The role of yoga practice as an element of the treatment of several neuropsychological diseases was evaluated based on these findings.