期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hot compression deformation behavior of AISI 321 austenitic stainless steel 被引量:7
1
作者 Mehdi Haj Hojjatollah Mansouri +2 位作者 Reza Vafaei Golam Reza Ebrahimi ali kanani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期529-534,共6页
The hot compression behavior of AISI 321 ll00~C and the strain rates of 0.01-1 s-1 using a Baehr austenitic stainless steel was studied at the temperatures of 950- DIL-805 deformation dilatometer. The hot deformation ... The hot compression behavior of AISI 321 ll00~C and the strain rates of 0.01-1 s-1 using a Baehr austenitic stainless steel was studied at the temperatures of 950- DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation (Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950~C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950~C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti. 展开更多
关键词 austenitic stainless steel DEFORMATION constitutive equations microstructural evolution activation energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部